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Abstract

We derive a novel decomposition of the Gini coefficient into within and between-
group inequality terms that sum to the aggregate Gini coefficient. This decompo-
sition is derived from a set of axioms that ensure desirable behavior for the within
and between-group inequality terms. The decomposition of the Gini coefficient is
unique given our axioms, easy to compute, and can be interpreted geometrically.

I Introduction

Empirical analyses of inequality often aim to quantify the contributions of within-group

inequality and between-group differences to aggregate inequality. This classic objec-

tive is known as inequality decomposition by population subgroups. Examples include

analyses of inequality within and between countries (Sala-i-Martin, 2006), demographic

subgroups (Cowell and Jenkins, 1995), or firms (Song et al., 2019).
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The Gini coefficient is the most popular measure of inequality, yet it lacks a univer-

sally accepted decomposition formula.1 Existing approaches to decomposing the Gini

coefficient are criticized for producing within-group or between-group inequality terms

that behave counter-intuitively. Further, these approaches often rely on introducing

a third term that describes neither within-group nor between-group inequality. This

lack of a satisfactory subgroup decomposition formula is arguably the most significant

drawback of the Gini coefficient, which is otherwise valued for its intuitive arithmetic

definition and geometric relation to the Lorenz curve.

In this paper, we derive a novel decomposition formula for the Gini coefficient from

a set of axioms that ensure desirable behavior for the within-group and between-group

inequality terms. We show that these axioms uniquely determine the decomposition

formula for the Gini coefficient. The decomposition is easy to compute, and has both

a geometric and an arithmetic interpretation. We demonstrate the decomposition by

analyzing the evolution of household income inequality within and between demographic

subgroups in the United States over the past six decades.

Our paper contributes to the literature on decomposable inequality indices by propos-

ing a standard for satisfactory decomposition that relies neither on the aggregativity

requirement put forward by Bourguignon (1979) and Shorrocks (1980), nor the path

independence requirement introduced by Foster and Shneyerov (2000). While aggrega-

tivity characterizes generalized entropy indices (but is violated by Foster-Shneyerov

indices) and path independence characterizes Foster-Shneyerov indices (but is violated

by generalized entropy indices), neither standard allows decomposition of the Gini coef-

ficient. Our definition of decomposability accommodates both the generalized entropy

and the Foster-Shneyerov indices, and also enables decomposition of the Gini coefficient.

II Notation and Definitions

We use R+ to denote the interval [0,∞) and R++ to denote the interval (0,∞). An

inequality index I: D → R+ is a function that maps a space of distributions D to the

non-negative real numbers and satisfies the five standard axioms of anonymity, scale

independence, population independence, normalization, and the Pigou-Dalton principle

1The Gini coefficient is also one of the earliest measures of inequality, introduced by Corrado Gini
in 1912. An overview of suggested decomposition formulas for the Gini coefficient can be found in
Giorgi (2011).
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of transfers.2

Throughout the paper, we represent income distributions by their generalized Lorenz

curves.3 A generalized Lorenz curve is an increasing convex function L: [0, 1] → R+

with L(0) = 0.4 The value of the generalized Lorenz curve at point p ∈ [0, 1] is equal to

p times the mean income of individuals below the pth quantile, and L(1) is equal to the

overall mean income. Hence, the generalized Lorenz curve is obtained by multiplying the

standard Lorenz curve by the mean income and thus preserves the information on the

mean of the distribution. In addition, generalized Lorenz curves provide a more general

representation of distributions than cumulative distribution functions.5 In particular,

distributions with perfect inequality can be represented by a generalized Lorenz curve

that is zero everywhere except at 1.

The Gini coefficient is defined for any generalized Lorenz curve L as6

G(L) = 2

∫ 1

0

p− L(p)

L(1)
dp.

III Axiomatic Framework

We consider a population that is partitioned into K subgroups. Subgroup k’s level of

inequality, population size, and total income are denoted by Ik, nk, and Yk, respectively.

We require that a subgroup decomposition of an inequality index I is the sum of a

within-group inequality term W and a between-group inequality term B:

I = W +B.

We introduce axioms that satisfactory within-group and between-group inequality terms

must satisfy. We call an inequality measure decomposable if it admits a decomposition

2Inclusion of the scale independence axiom means that we focus on indices of relative inequality
rather than absolute inequality. Indices of relative inequality have the virtue of being independent of
the unit of measurement.

3We frame our discussion in terms of income distributions, but income can be substituted with any
non-negative real valued attribute.

4Note that by restricting generalized Lorenz curve to be increasing, we are ruling out negative
incomes.

5For a distribution that has a cumulative distribution function, F , the generalized Lorenz curve
can be expressed as L(p) =

∫ p

0
F−1(t)dt, where F−1 is the generalized inverse of F (Gastwirth, 1971).

6If all incomes are zero, then the generalized Lorenz curve is a constant function at zero and the
formula defining the Gini coefficient cannot be evaluated. We define the Gini coefficient to be zero in
this case.
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that satisfies these axioms.7

III.1 Within-Group Inequality

Within-group inequality summarizes how inequality within subgroups contributes to

aggregate inequality. We require that within-group inequality depends only on subgroup

inequality levels and aggregate characteristics, that is, each subgroup’s total population

and total income. Let WK : R3K
+ → R+ denote within-group inequality for a population

consisting of K subgroups. We posit the following axioms:

1. Regularity. WK is continuous, and strictly increasing in Ik if nk, Yk > 0.

2. Symmetry. For any permutation P and for all (Ik, nk, Yk)
K
k=1 ∈ R3K

+ ,

WK

(
(I1, n1, Y1), . . . , (IK , nK , YK)

)
= WK

(
P
(
(I1, n1, Y1), . . . , (IK , nK , YK)

))
.

3. Scale and population independence.

WK

(
(I1, n1, Y1), . . . , (IK , nK , YK)

)
= WK

(
(I1, an1, bY1), . . . , (IK , anK , bYK)

)
for all a, b > 0 and for all (Ik, nk, Yk)

K
k=1 ∈ R3K

+ .

4. Normalization. WK

(
(0, n1, Y1), . . . , (0, nK , YK)

)
= 0 for all (nk, Yk)

K
k=1 ∈ R2K

+ .

5. Weak reflexivity. WK

(
(I, a1n, a1Y ), . . . , (I, aKn, aKY )

)
= I for all (I, n, Y ) ∈

R3
++ and for all (ak)

K
k=1 ∈ RK

++.

6. Replacement. For all (Ik, nk, Yk)
K
k=1 ∈ R3K

+ and m ≤ K,

WK

(
(I1, n1, Y1), . . . , (IK , nK , YK)

)
= WK−m+1

((
Ĩ ,
∑m

k=1 nk,
∑m

k=1 Yk

)
, (Im+1, nm+1, Ym+1), . . . , (IK , nK , YK)

)
,

where Ĩ = Wm

(
(I1, n1, Y1), . . . , (Im, nm, Ym)

)
.

Regularity ensures that within-group inequality increases continuously in subgroup

inequality levels. Symmetry ensures that within-group inequality is independent of

the labels given to each subgroup and is sometimes also called anonymity. Scale and

7In appendix B, we discuss how our definition of decomposability relates to other standards sug-
gested in the literature.

4



population independence ensures that the decomposition is independent of the size of

the population and the unit of measurement for income. Normalization ensures that

within-group inequality is zero when there is no inequality within any subgroup.

Weak reflexivity states that when all subgroups have the same level of inequality and

mean income, within-group inequality is equal to the common inequality level across

the subgroups. Hence, weak reflexivity ensures that within-group inequality equals

aggregate inequality when the population consists of only one subgroup. Moreover, it

ensures that within-group inequality does not change if that subgroup is divided into

smaller subgroups with identical income distributions. Without weak reflexivity, within-

group inequality would not be comparable across populations with different numbers

of subgroups.

Finally, the replacement axiom states that the level of within-group inequality re-

mains unchanged if we replace any number of subgroups by a single subgroup with

population size and total income equal to the combined population and income of the

replaced subgroups, and with inequality equal to the level of within-group inequality

among the replaced subgroups. Together with symmetry, replacement ensures a con-

sistent aggregation property. For example, consider computing within-group inequality

among the fifty US states. Replacement guarantees that this can be done if we are

given the level of within-group inequality in subaggregates, such as the eastern states

and the western states, together with the population sizes and total incomes of these

subaggregates. In particular, information on the inequality levels of individual states is

not needed in this case. This is a natural property because the contribution to aggregate

inequality stemming from inequality within individual states is already summarized in

the levels of within-group inequality in the subaggregates.

Axioms 1 through 6 imply strong restrictions on the functional form that within-

group inequality can have.

Theorem 1. Let (WK)
∞
K=1 be a sequence of functions WK: R3K

+ → R+. Then, (WK)

satisfies axioms 1-6 if and only if

WK

(
(I1, n1, Y1), . . . , (IK , nK , YK)

)
= f−1

( K∑
k=1

π1−α
k θαk f(Ik)

)
, (1)

for all K ≥ 1 and for all (Ik, nk, Yk)
K
k=1 ∈ R3K

+ , where f is some continuous and strictly

increasing function with f(0) = 0, α ∈ R is some real number, πk = nk/
∑K

k=1 nk, and

θk = Yk/
∑K

k=1 Yk.
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Theorem 1 holds that within-group inequality must take the form of a quasi-arithmetic

mean of subgroup inequalities with weights that do not necessarily sum to one. More-

over, each subgroup’s weight must itself be a weighted geometric average of the sub-

group’s population and income share. The proof proceeds by showing that, for given K

and aggregate characteristics, the axioms imply that WK satisfies bisymmetry. Bisym-

metry has been used by Aczél (1948) and Münnich et al. (2000) to characterize quasi-

arithmetic means. The rest of the proof shows that the generating function f and

the form of the weight function do not depend on the number of subgroups or their

aggregate characteristics. The complete proof is presented in appendix A.

The functional form in Theorem 1 nests the expressions for within-group inequality

in the standard decomposition formulas for the generalized entropy indices and the

Foster-Shneyerov indices – two important classes of decomposable inequality indices

(Bourguignon, 1979; Shorrocks, 1980; Cowell, 1980; Foster and Shneyerov, 2000).8 In-

terestingly, however, several decomposition formulas for the Gini coefficient suggested

in the literature are ruled out by this theorem. For example, the most common decom-

position formula for the Gini coefficient due to Bhattacharya and Mahalanobis (1967)

is ruled out by Theorem 1 since the weight function is not a weighted geometric av-

erage, implying that the within-group inequality term violates weak reflexivity.9 More

recently, Shorrocks (2013) proposed an algorithm for inequality decomposition which

results in a within-group inequality term that generally does not take the form of a

quasi-arithmetic mean.

III.2 Between-Group Inequality

Between-group inequality summarizes how differences in income distributions across

subgroups contribute to aggregate inequality. We define between-group inequality to

be a function of subgroup income distributions, population sizes, and total incomes,

that is, BK : (D × R+ × R+)
K → R+. We posit the following axioms:

7. Normalization. If all subgroups have the same income distribution, then BK is

equal to zero.

8The within-group inequality term in the standard decomposition formula for the generalized en-
tropy index of order α is given by

∑K
k=1 π

1−α
k θαk Ik, and the within-group inequality term in the standard

decomposition formula for the Foster-Shneyerov index of order q is given by
∑K

k=1 πkIk.
9The within-group inequality term in the Gini decomposition of Bhattacharya and Mahalanobis

(1967) is given by
∑K

k=1 πkθkIk.
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8. Conditional distribution independence. For given aggregate characteristics

(n1, . . . , nK , Y1, . . . , YK) ∈ R2K
+ , if there exists a function F : RK

+ → R+ such that

I(L) = F
(
I1, . . . , IK

)
for all (I1, . . . , IK) ∈ RK

+ , then BK does not depend on the distribution of income

within subgroups.

Normalization ensures that between-group inequality is zero when the subgroups’

income distributions are identical so that aggregate inequality must be entirely due to

income differences within subgroups.10

Conditional distribution independence generalizes a property imposed by Bour-

guignon (1979) and Shorrocks (1980), which requires that between-group inequality

is unaffected by income transfers within subgroups. These authors impose distribution

independence in the context of aggregative inequality indices, which are indices for

which aggregate inequality is a function of subgroup population sizes, inequality levels,

and average incomes. It is natural to require distribution independence for aggregative

inequality indices since the impact of within-group transfers on aggregate inequality

is fully summarized by changes in subgroup inequality levels and should therefore be

attributed to within-group inequality.

However, imposing unconditional distribution independence on nonaggregative in-

equality indices like the Gini coefficient is inappropriate, as within-group transfers only

keep the means constant while aggregate inequality is generally also sensitive to whether

these transfers make the subgroup distributions more or less similar in other moments.

Clearly, changes in aggregate inequality due to subgroup distributions becoming more

or less similar should be captured by between-group inequality, which therefore cannot

be distribution independent.

Instead, conditional distribution independence only imposes distribution indepen-

dence whenever, for given aggregate characteristics, the aggregate inequality index is

a function of subgroup inequality indices alone. In these special cases, the inequality

index is aggregative and therefore between-group inequality should indeed be indepen-

dent of the income distribution within subgroups. As is well known, the Gini coefficient

10Note that Axiom 7 is implied by Axiom 5 (Weak reflexivity) and the requirement that aggregate
inequality is the sum of within and between-group inequality. In appendix B, we strengthen Axiom 7
to show that a similar axiomatic framework can be used to derive unique decompositions not only for
the Gini coefficient but also other classes of inequality indices. The strengthened version of Axiom 7
is not implied by Axiom 5 and is satisfied by the Gini decomposition derived in this paper.
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is aggregative when all but one subgroup have zero income or population share and

the aggregate characteristics are therefore such that the subgroup income distributions

cannot overlap.

IV Decomposition of the Gini Coefficient

We next show that there exists a unique decomposition of the Gini coefficient into

a within-group and a between-group term that satisfies all the axioms introduced in

section III.

IV.1 Decomposition Formula

Theorem 2. A decomposition for the Gini coefficient satisfies axioms 1-8 if and only

if the within-group inequality term is

GW =

( K∑
k=1

√
πkθkGk

)2

, (2)

where πk, θk, and Gk are the population share, income share, and Gini coefficient of

subgroup k, and the between-group inequality term is

GB =
1

2µ

(
Θ−

∑
k ̸=l

πkπl

√
∆k∆l

)
, (3)

where µ is the aggregate mean, Θ = E
[
1{gi ̸=gj}|yi − yj|

]
is the cross mean absolute

difference, ∆k = E
[
|yi−yj|

∣∣gi = gj = k
]
is the mean absolute difference within subgroup

k, and yi and gi denote the income and subgroup affiliation of individual i.

Within-group inequality in the Gini decomposition is a weighted power mean of

subgroup inequalities where each subgroup is weighted by the geometric mean of its

income and population share.11 Between-group inequality is the difference between the

cross mean absolute difference, defined as the mean absolute difference of individuals

drawn from different subgroups, and a weighted sum of geometric averages of subgroup

mean absolute differences, divided by twice the aggregate mean. In practice, however,

11A power mean, also known as generalized mean or Hölder mean, with exponent p is a function

Mp(x1, . . . , xn) =
(∑n

i=1 x
p
i

) 1
p and includes as special cases the arithmetic, geometric, and harmonic

means.
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it is generally easier to compute the between-group inequality term as a residual, GB =

G−GW .

The proof of Theorem 2 proceeds by first showing that the expressions for GW

and GB sum to the aggregate Gini coefficient and that the decomposition satisfies

axioms 1-8. We then show uniqueness by leveraging the fact that the Gini coefficient is

aggregative when subgroup income distributions cannot overlap. In these special cases,

Axiom 8 together with Theorem 1 pin down the generating function f and the weight

structure in equation (1), which uniquely determine the within-group and between-

group inequality terms. The complete proof is presented in appendix A.

In appendix B, we show that our axiomatic framework can also be used to uniquely

determine the standard decomposition formulas for the generalized entropy and Foster-

Shneyerov indices. In appendix C, we derive asymptotic confidence intervals for the

within and between-group inequality terms of the Gini decomposition. In appendix

D, we show how the decomposition formula can be extended to the multivariate Gini

coefficients introduced in Koshevoy and Mosler (1997).

IV.2 Discussion of the Gini Decomposition

The within and between-group inequality terms in the Gini decomposition of Theorem 2

satisfy several additional properties that we have not directly imposed as axioms. First,

as a weighted power mean the within-group inequality term is homogeneous.12 That

is, any redistribution of incomes within subgroups that reduces subgroup Gini coeffi-

cients by some given factor will also reduce within-group inequality by the same factor.

Note, however, that the within-group inequality term is not linear in the subgroup Gini

coefficients.

Second, the between-group inequality term summarizes the contribution to aggre-

gate inequality stemming from differences in the means and the shapes of the subgroup

income distributions. Unlike the between-group inequality term for the Theil index

(and other generalized entropy indices) that depends only on differences in subgroup

means, the between-group inequality term for the Gini coefficient depends on differences

in all moments of the subgroup income distributions. This is natural since, unlike other

inequality indices, the aggregate Gini coefficient itself depends on all the moments of

the subgroup income distributions. Specifically, Proposition 1 shows that changes in

the subgroup income distributions can affect the aggregate Gini coefficient even if all

12Homogeneity is in fact the only additional property that power means have over quasi-arithmetic
means implied by Theorem 1.
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subgroup Gini coefficients as well as any number of subgroup moments are held fixed.13

Proposition 1. The aggregate Gini coefficient cannot be written as a function of sub-

group population sizes, Gini coefficients, and any number of subgroup moments. That

is, there does not exist a set of moments Ω and a function F , such that

G(L) = F
(
G1, . . . , GK ; Ω1, . . . ,ΩK ;n1, . . . , nK

)
, (4)

where Ωk is the vector of moments for subgroup k.

How between-group inequality depends on differences in the shapes of the subgroup

income distributions is also intuitive. First, as is shown in Proposition 8 of section IV.3,

the between-group inequality term is zero if and only if the distribution of income is

identical across subgroups.

Second, the between-group inequality term becomes smaller as subgroup income dis-

tributions become more similar. Specifically, Proposition 2 states that between-group

inequality is reduced when the subgroup affiliations for a random subset of individu-

als are permuted so that subgroup income distributions become unambiguously more

similar to each other.14 Moreover, the only case in which this operation does not make

subgroup income distributions more similar is when the distributions are identical to

begin with. Because the aggregate Gini coefficient is sensitive to all moments of the

subgroup income distributions, this is the only case in which between-group is not

reduced.

Proposition 2. In an infinite population, randomly permuting the subgroup affiliations

for a subset of randomly selected individuals with positive population share weakly re-

duces between-group inequality (while keeping the aggregate Gini coefficient constant).

Between-group inequality remains constant if and only if all subgroups have the same

distribution of income.

Similarly, merging several subgroups into one should decrease between-group in-

equality as any differences between the merged subgroups can no longer contribute to

overall between-group inequality. Proposition 3 states that this operation indeed re-

duces between-group inequality unless the income distributions of the merged subgroups

are all identical.
13The claim that the between-group inequality term in the Gini decomposition is sensitive to any

differences in subgroup income distributions is a corollary of Proposition 1.
14Equivalently, one may consider replacing the incomes of a fixed fraction of randomly sampled

individuals in each subgroup with a random draw from the aggregate income distribution. Equivalency
between these two operations is a direct consequence of the anonymity property of inequality indices.
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Proposition 3. Merging any m ≤ K subgroups into one subgroup weakly reduces the

between-group inequality term in the Gini decomposition. Between-group inequality is

unaffected if and only if the merged subgroups have identical income distributions.

There also exist operations that reduce both within-group inequality and between-

group inequality. For example, redistributing incomes so that the difference between

each individual’s income and the average income is reduced by a given percentage

clearly reduces aggregate inequality.15 Moreover, as such redistribution at the same

time compresses subgroup income distributions and brings them closer to each other,

one may expect it to decrease within-group and between-group inequality by similar

proportions. Proposition 4 shows that this is indeed the case.

Proposition 4. Let yi denote the income of individual i, and let µ denote the average

income in the population. For some α ∈ [0, 1], replacing every income yi by ỹi =

yi − α(yi − µ) reduces within-group inequality and between-group inequality in the Gini

decomposition by a fraction α.

It is often of interest to know by how much aggregate inequality would be reduced

if all subgroup means were equalized while keeping the level of within-group inequality

fixed. For many inequality indices this question is not easily answered. For example, as

was pointed out by Shorrocks (1980), there is no obvious operation for the Theil index

that would eliminate differences in average incomes between subgroups and also keep

the within-group inequality term fixed.16 Proposition 5 shows that the decomposition

of the Gini coefficient admits an operation that can be used to eliminate differences

between subgroups in average incomes while keeping within-group inequality fixed.

This property can be used to further decompose between-group inequality into a first

part that reflects differences in means and a second part that reflects differences in the

shape of the distribution. We implement such an exercise in appendix G.

Proposition 5. Lump-sum transfers between subgroups do not affect within-group in-

equality in the Gini decomposition.

Finally, we note that scaling or translating all incomes does not affect the share

of aggregate inequality that is attributed to within-group or between-group inequality

15This can be achieved with a flat tax and a lump sum transfer, which is the standard setup in the
optimal linear tax literature (see, e.g., Piketty and Saez (2013)), in the absence of behavioral responses
to the tax.

16For example, scaling the incomes in each subgroup so that the subgroup means are equalized
changes the subgroup income shares and thereby affects the within-group inequality term in the de-
composition of the Theil index. The only generalized entropy index for which scaling incomes does
not affect within-group inequality is the mean log deviation.
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in the Gini decomposition. While the scale independence of the decomposition follows

directly from the scale independence of the Gini coefficient and therefore applies to the

decomposition of all scale-independent inequality indices, translation independence is

a special feature of the Gini decomposition. Translation independence is convenient if

one wants to decompose the Gini coefficient of attributes that can be negative, such as

wealth.

Proposition 6. The Gini decomposition is both scale and translation invariant. Specif-

ically, changing incomes for each individual i from yi to ỹi = ayi + b does not affect

the relative magnitude of within-group and between-group inequality for any a > 0 and

b ∈ R such that each subgroup’s mean income remains positive.

IV.3 Geometric Interpretation

The Gini coefficient is traditionally defined as twice the area between the Lorenz curve

and the line of perfect equality. To derive a geometric interpretation for the Gini

decomposition, it is useful to define the Lorenz region as the region within the unit

square that is bounded by the Lorenz curve and its centrally reflected counterpart (see

Figure 1).17 Clearly, the Gini coefficient is equal to the area of the Lorenz region.

For a given partition of the population into subgroups, we can also define subgroup

Lorenz regions by scaling each subgroup’s Lorenz region with a vector (πk, θk) where

πk and θk are subgroup k’s population and income shares, respectively (see Figure 1).

Importantly, Zagier (1983) shows that there is a geometric relationship between the

aggregate and the subgroup Lorenz regions. Specifically, Proposition 7 (proven as part

of Theorem 1 in Zagier (1983)) states that the Lorenz region of the aggregate population

is the Minkowski sum of the subgroup Lorenz regions.18

Proposition 7. A population consisting of K ≥ 2 subgroups with subgroup Lorenz

regions Λ1,Λ2, . . . ,ΛK has an aggregate Lorenz region

Λ = Λ1 ⊕ Λ2 ⊕ . . .⊕ ΛK ,

where ⊕ denotes the Minkowski sum of sets.

Figure 1 illustrates the Minkowski addition of two subgroup Lorenz regions in the case

17This region is also known as the Lorenz zonoid, see Koshevoy and Mosler (1997).
18The Minkowski sum, also known as the vector sum, of two sets A and B is defined as A ⊕ B =

{a+ b : a ∈ A, b ∈ B}.
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Figure 1: Aggregation of subgroup Lorenz regions. In this example, there are two different
levels of income in subgroup 1 and three different levels of income in subgroup 2. In the
aggregate Lorenz curve, individuals from both subgroups are ordered by their income. Geo-
metrically, this corresponds to arranging the linear segments of the subgroup Lorenz curves
in ascending order by their slopes. The resulting aggregate Lorenz region coincides with the
Minkowski sum of the subgroup Lorenz regions.

of discrete income distributions. In appendix F, we illustrate the Minkowski addition

in the case of continuous income distributions.

A useful implication of representing the aggregate Gini coefficient as the area of the

Minkowski sum of subgroup Lorenz regions is that we can make use of an important

result relating the areas of compact sets: the Brunn-Minkowski theorem. Specifically,

the Brunn-Minkowski theorem provides a lower bound for the aggregate Gini coefficient

in terms of subgroup Gini coefficients and aggregate characteristics.

Proposition 8 (Brunn-Minkowski theorem). For a population with Lorenz region

Λ and Gini coefficient G consisting of K subgroups with subgroup Lorenz regions

Λ1, . . . ,ΛK, Gini coefficients G1, . . . , GK, population shares π1, . . . , πK, and income

shares θ1, . . . , θK, we have

G = |Λ| ≥
( K∑

k=1

√
|Λk|

)2
=
( K∑

k=1

√
πkθkGk

)2
= GW

where | · | is the Lebesgue measure. The inequality holds as equality if and only if

Λ1, . . . ,ΛK are homothetic.

In light of Proposition 8, within-group inequality can be interpreted geometrically

as the minimal area of the aggregate Lorenz region for given areas of the subgroup
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Lorenz regions. Similarly, between-group inequality is the excess area in the aggregate

Lorenz region that is not explained by the areas of the subgroup Lorenz regions.

As the Minkowski sum of the subgroup Lorenz regions, the area of the aggregate

Lorenz region depends both on the areas of the subgroup Lorenz regions as well as on

how similar the shapes of the subgroup Lorenz regions are. The constrained minimum is

achieved when the subgroup income distributions are all identical so that the subgroup

Lorenz regions are homothetic. As a consequence, between-group inequality measures

the excess area in the population Lorenz region resulting from non-homotheticity of

the subgroup Lorenz regions. In other words, between-group inequality measures how

differences in the shapes of the subgroup income distributions contribute to aggregate

inequality.19 In appendix E, we offer an arithmetic interpretation for the Gini decom-

position.

The fact that the expression for the within-group inequality term is a lower bound

for the aggregate Gini coefficient has previously been shown in Zagier (1983) using

the Brunn-Minkowski inequality. Zagier (1983) studies the problem of bounding the

aggregate Gini coefficient for given subgroup Gini coefficients, means, and population

shares, and derives our expression for the within-group inequality term as one of several

lower bounds for the aggregate Gini coefficient.20 The paper also notes that aggregate

inequality is smaller when subgroups are more similar in their income distributions. Be-

cause the paper considers the situation where subgroup Gini coefficients and aggregate

characteristics are fixed, this is equivalent to noting that our between-group inequality

term is smaller when the subgroup income distributions are more similar.

IV.4 Subgroup Consistency

The Gini decomposition together with its geometric interpretation provides helpful

insights into a notorious behavior of the Gini coefficient that is called subgroup incon-

sistency ; an increase in inequality within subgroups, while keeping subgroup means and

19In convex geometry, the excess area of the Minkowski sum relative to the Brunn-Minkowski lower
bound is sometimes called the Brunn-Minkowski deficit, which has been shown to relate to the sym-
metry of the added sets. Figalli et al. (2009), for example, show that the Brunn-Minkowski deficit is
bounded from below by an increasing function of the relative asymmetry of the added sets.

20Note that the within-group inequality term for the Gini coefficient is not generally the best lower
bound in Zagier’s setup. Unlike in our setup where only the areas of the subgroup Lorenz regions (the
product of πk, θk, and Gk) are given, Zagier looks for the best lower bound for the aggregate Gini
coefficient when the subgroup Gini coefficients, population shares, and means are given individually.
The implied best lower bound therefore exceeds our within-group inequality term as it also incorporates
the part of between-group inequality stemming from differences in subgroup means.
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population sizes constant, can lead to a decrease in aggregate inequality.21 Subgroup

consistency, which rules out this behavior, has been proposed as a requirement for

decomposability (Cowell, 2000). The results in this paper clarify that the Gini coeffi-

cient can violate subgroup consistency if an increase in inequality within subgroups also

makes the subgroup income distributions more similar so that between-group inequality

decreases more than within-group inequality increases.

Moreover, we note that the Gini coefficient does satisfy a weaker version of subgroup

consistency. In particular, Proposition 9 states that any transfers within subgroups that

increase subgroup inequalities according to the Lorenz criterion must also increase the

aggregate Gini coefficient.22 It follows that if transfers that increase inequality within

subgroups reduce the aggregate Gini coefficient, it must be the case that for at least

one subgroup the new Lorenz curve intersects with the old Lorenz curve. The proof of

Proposition 9 makes use of the fact that outward shifts of the subgroup Lorenz curves

must result in an outward shift of the aggregate Lorenz curve.

Proposition 9 (Weak subgroup consistency). Transfers within one or more subgroups

that increase the level of subgroup inequality according to the Lorenz criterion also

increase aggregate inequality.

V Empirical Application

We demonstrate our decomposition of the Gini coefficient by analyzing the extent to

which household income inequality in the United States reflects inequality within ver-

sus between demographic subgroups. In this decomposition, between-group inequality

summarizes how much of overall inequality is “explained” by differences in income dis-

tributions between demographic subgroups, while within-group inequality is a measure

of “residual inequality” (Cowell and Jenkins, 1995; Juhn et al., 1993).23

We use data on household income in the United States from the Current Population

Surveys and define demographic subgroups by the age, education, sex, and race of the

21Different examples of specific distributions and transfers that produce this behavior have been
discussed in the literature (see, for example, Cowell (1988)).

22The Lorenz criterion states that inequality of distribution A exceeds that of distribution B if the
Lorenz curve of A is always below that of B, and therefore any inequality index must judge inequality
to be higher in distribution A than in distribution B.

23Cowell and Jenkins (1995) study how much of aggregate inequality in the United States can
be “explained” by demographic characteristics using different Atkinson indices. Juhn et al. (1993)
document rising wage inequality among men who are otherwise similar in terms of education and
labor market experience. Since then, a large literature in labor economics devoted to explaining the
rise in “residual inequality” has emerged.
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Figure 2: Household-level income inequality within and between demographic subgroups.
Households are grouped by the age (≤ 35, 36–45, 46-55, 56-65,> 65), education (no college,
some college, Bachelor’s degree, more than Bachelor’s degree), sex (male, female), and race
(Black, White, other) of the household head. Asymptotic confidence intervals are computed
using the formulas derived in appendix C.

household head.24 Figure 2 shows the evolution of within-group and between-group

inequality for the years 1967–2021. Overall, and in line with the conclusion in Cowell

and Jenkins (1995), a relatively minor share of aggregate inequality is explained by

differences in income distributions between demographic subgroups. Moreover, over

the past five decades the aggregate Gini coefficient has increased from 0.39 to 0.50,

and this increase was clearly driven by a rise in within-group inequality, which has

increased from 0.29 to 0.41. At the same time, between-group inequality has decreased

slightly from 0.10 to 0.09. As a consequence, the share of aggregate inequality that

can be attributed to demographic characteristics has decreased from 25 to 17 percent.

In appendix G, we show how the fact that lump-sum transfers between subgroups do

not affect within-group inequality can be used to isolate the part of between-group

24To deal with topcoding in the CPS data, we follow Heathcote et al. (2023).
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inequality that is due to differences in average earnings between subgroups.25

VI Concluding Remarks

The Gini coefficient is the most prominent measure of inequality. Yet, there has been

much disagreement regarding its decomposition by population subgroups. As a conse-

quence, researchers often rely on other inequality indices when assessing the contribu-

tion of within-group and between-group inequality to aggregate inequality, even if they

would otherwise prefer to work with the Gini coefficient.

In this paper, we show that the Gini coefficient admits a satisfactory decomposition

formula derived from a set of axioms that ensure desirable behavior for the within-

group and between-group inequality terms. The decomposition is novel, unique given

our axioms, and easy to compute. Moreover, it can be interpreted both geometrically

and arithmetically. Given these advantages, the Gini decomposition derived in this

paper can be a valuable tool for empirical research.

Appendix

A Proofs

A.1 Proof of Theorem 1

It is easy to verify that the functional form in (1) satisfies axioms 1-6. The remainder

of the proof shows that if (WK) satisfies axioms 1-6, then (1) holds. We first show that

for given K ≥ 2 and aggregate characteristics (nk, Yk)
K
k=1 ∈ R2K

++, WK must have the

form

WK

(
(I1, n1, Y1), . . . , (IK , nK , YK)

)
= f−1

( K∑
k=1

akf(Ik)

)
, (5)

for all (Ik)
K
k=1 ∈ RK

+ , where f : R+ → R+ is a continuous increasing function such that

f(0) = 0 and (ak)
K
k=1 ∈ RK

++.

25In the same appendix, we also implement an additional empirical application focusing on gender
earnings inequality in the United States. Both of our empirical applications apply the decomposition
formula to study inequality in a single country over time. Alternatively, one could use the decompo-
sition to compare inequality across countries. For example, if we observe that country A has a higher
Gini coefficient than country B, and if the within-group inequality term is also higher in country A
than in country B, then we can conclude that country A is more unequal, in part, because inequality
within the subgroups contribute more to aggregate inequality in country A than in country B.
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Suppose K ≥ 2 and (nk, Yk)
K
k=1 ∈ R2K

++ are fixed and let B(x1, . . . , xK) =

WK

(
(x1, n1, Y1), . . . , (xK , nK , YK)

)
. Now, B satisfies the bisymmetry equation

B
(
B(x11, . . . , x1K), . . . , B(xK1, . . . , xKK)

)
= B

(
B(x11, . . . , xK1), . . . , B(x1K , . . . , xKK)

)
for all (xij) ∈ RK·K

+ . To show this, we use axioms 2, 3, and 6:

B(B(x11, . . . , x1K), . . . , B(xK1, . . . , xKK))

=WK

(
(WK((x11, n1, Y1), . . . , (x1K , nK , YK)), n1, Y1), . . .

. . . , (WK((xK1, n1, Y1), . . . , (xKK , nK , YK)), nK , YK)
)

=WK

(
(WK((x11,

n1∑K
k=1 nk

n1,
Y1∑K

k=1 Yk
Y1), . . . , (x1K ,

n1∑K
k=1 nk

nK ,
Y1∑K

k=1 Yk
YK)), n1, Y1),

. . . , (WK((xK1,
nK∑K
k=1 nk

n1,
YK∑K
k=1 Yk

Y1), . . . , (xKK ,
nK∑K
k=1 nk

nK ,
YK∑K
k=1 Yk

YK)), nK , YK)
)

=WK2

(
(x11,

n1∑K
k=1 nk

n1,
Y1∑K

k=1 Yk
Y1), . . . , (x1K ,

n1∑K
k=1 nk

nK ,
Y1∑K

k=1 Yk
YK),

. . . , (xK1,
nK∑K
k=1 nk

n1,
YK∑K
k=1 Yk

Y1), . . . , (xKK ,
nK∑K
k=1 nk

nK ,
YK∑K
k=1 Yk

YK)
)

=WK2

(
(x11,

n1∑K
k=1 nk

n1,
Y1∑K

k=1 Yk
Y1), . . . , (xK1,

nK∑K
k=1 nk

n1,
YK∑K
k=1 Yk

Y1),

. . . , (x1K ,
n1∑K

k=1 nk
nK ,

Y1∑K
k=1 Yk

YK), . . . , (xKK ,
nK∑K
k=1 nk

nK ,
YK∑K
k=1 Yk

YK)
)

=WK

(
(WK((x11,

n1∑K
k=1 nk

n1,
Y1∑K

k=1 Yk
Y1), . . . , (xK1,

nK∑K
k=1 nk

n1,
YK∑K
k=1 Yk

Y1)), n1, Y1),

. . . , (WK((x1K ,
n1∑K

k=1 nk
nK ,

Y1∑K
k=1 Yk

YK), . . . , (xKK ,
nK∑K
k=1 nk

nK ,
YK∑K
k=1 Yk

YK), nK , YK)
)

=WK

(
(WK((x11, n1, Y1), . . . , (xK1, nK , YK)), n1, Y1),

. . . , (WK((x1K , n1, Y1), . . . , (xKK , nK , YK)), nK , YK)
)

=B(B(x11, . . . , xK1), . . . , B(x1K , . . . , xKK)).

Thus, B is a continuous function that is strictly increasing in each of its arguments,

symmetric, and satisfies bisymmetry. As shown in Aczél (1948), B can be used to

construct a function M : RK
+ → R+ that has the same properties but is also reflexive

by defining M(x1, . . . , xK) = F−1(B(x1, . . . , xK)), where F (z) = B(z, . . . , z).26 Hence,

M satisfies the conditions of Theorem 2 in Münnich et al. (2000), which states that

M(x1, . . . , xK) = f−1

( K∑
k=1

bkf(xk)

)
, (6)

26Aczél (1948) shows this in the case where B is a bivariate function but the same proof generalizes
to the case of K variables.
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for some continuous increasing function f : R+ → R+ such that f(0) = 0 and for some

bk > 0 such that
∑K

k=1 bk = 1. Aczél (1948) shows that (6) implies

B(x1, . . . , xK) = f−1

( K∑
k=1

akf(xk) + b

)
,

where ak = abk for some a ̸= 0 and b ∈ R. Since f(0) = 0, then by the normalization

axiom, B(0, . . . , 0) = f−1(b) = 0, which implies b = 0. Thus, we get equation (5).

In equation (5), the constants ak and the generating function f can depend on K

and (nk, Yk)
K
k=1. Note that f and cf generate the same WK for any constant c > 0.

Thus, if g(x) = cf(x) for all x, we call f and g the same generating function. We next

show that the generating function of WK is independent of K and (nk, Yk)
K
k=1.

Let K ≥ 4. By replacement and symmetry, we have

WK

(
(I1, n1, Y1), . . . , (IK , nK , YK)

)
= W3

(
(I1, n1, Y1), (I2, n2, Y2),

(
WK−2

(
(I3, n3, Y3), . . . , (IK , nK , YK)

)
,

K∑
k=3

nk,
K∑
k=3

Yk

))

for all (Ik, nk, Yk)
K
k=1 ∈ R3K

+ . Suppose (nk, Yk)
K
k=1 ∈ R2K

++ are given. By substituting

equation (5) to the both sides of the above equation, we get

f−1

( K∑
k=1

akf(Ik)

)
= g−1

(
b1g(I1) + b2g(I2) + b3g

(
h−1

( K∑
k=3

ckh(Ik)

)))
, (7)

where f, g, h are continuous and strictly increasing functions with f(0) = g(0) = h(0) =

0. Now, set Ik = 0 for k = 3, . . . , K and define x = f(I1), y = f(I2). Then, (7) implies

ϕ(a1x+ a2y) = b1ϕ(x) + b2ϕ(y)

for all x, y ∈ R+, where ϕ = g ◦ f−1. By Theorem 2 on page 67 in Aczél (1966), this

equation has a solution only if a1 = b1 and a2 = b2 and the solution is ϕ(x) = cx for

some constant c ̸= 0. Thus g ◦ f−1(x) = cx which implies g(x) = cf(x) for all x ∈ R+,

i.e., WK and W3 have the same generating function for any K ≥ 4.

Inserting this result into equation (7) when K = 4, we get

f−1

( 4∑
k=1

akf(Ik)

)
= f−1

(
a1f(I1) + a2f(I2) + b3f

(
h−1

(
c1h(I3) + c2h(I4)

)))
.
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By defining x = h(I3) and y = h(I4), we can rewrite above equation as

a3
b3
ϕ(x) +

a4
b3
ϕ(y) = ϕ

(
c1x+ c2y

)
for all x, y ∈ R+, where ϕ = f ◦ h−1. This yields c1 = a3/b3, c2 = a4/b3 and ϕ(x) =

f ◦ h−1(x) = cx for some constant c ̸= 0, or f(x) = ch(x) for all x. Thus, W2 and W4

have the same generating function. Hence, we get that the generating function of WK

is independent of K for K ≥ 2. Moreover, since aggregate characteristics (nk, Yk)
K
k=1

were arbitrary, the generating function does not depend on them.

Finally, we show that the constants ak in (5) have the form ak = π1−α
k θαk , where

πk = nk/
∑K

k=1 nk and θk = Yk/
∑K

k=1 Yk. Using replacement and equation (5), we get

f−1

( K∑
k=1

akf(Ik)

)
= f−1

(
b1

K−1∑
k=1

ckf(Ik) + b2f(IK)

)
(8)

for all K ≥ 2, (Ik)
K
k=1 ∈ RK

+ and (nk, Yk)
K
k=1 ∈ R2K

++, where

ak = a(nk, Yk;n1, Y1, . . . , nK , YK), ck = c(nk, Yk;n1, Y1, . . . , nK−1, YK−1),

b1 = b
(∑K−1

k=1 nk,
∑K−1

k=1 Yk;
∑K−1

k=1 nk,
∑K−1

k=1 Yk, nK , YK

)
, and b2 =

b
(
nK , YK ;

∑K−1
k=1 nk,

∑K−1
k=1 Yk, nK , YK

)
for some functions a, b, and c. By setting

Ik = 0 for k = 1, . . . , K − 1, we get

a(nK , YK ;n1, Y1, . . . , nK , YK) = b

(
nK , YK ;

K−1∑
k=1

nk,
K−1∑
k=1

Yk, nK , YK

)

for all (nk, Yk)
K
k=1 ∈ R2K

+ . By scale and population independence, we get

a(nK , YK ;n1, Y1, . . . , nK , YK) = b(πK , θK ; 1− πK , 1− θK , πK , θK) = w(πK , θK) (9)

for some function w. Due to symmetry, this result holds for any k. Moreover, since K

is arbitrary, same result applies to functions b and c. By substituting (9) into equation

(8) and setting Ij = 0 for all j ̸= k for some k = 1, . . . , K − 1, we get

w

(
nk∑K
k=1 nk

,
Yk∑K
k=1 Yk

)
= w

(∑K−1
k=1 nk∑K
k=1 nk

,

∑K−1
k=1 Yk∑K
k=1 Yk

)
w

(
nk∑K−1

k=1 nk

,
Yk∑K−1

k=1 Yk

)
,

which generalizes to w(ab, cd) = w(a, c)w(b, d) for all a, b, d, c ∈ (0, 1). Let a = ex1 ,
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b = ex2 , c = ex3 , d = ex4 . Then, we have

φ(x1 + x2, x3 + x4) = φ(x1, x3) + φ(x2, x4)

for all x1, x2, x3, x4 ∈ (−∞, 0) where φ(x, y) = lnw(ex, ey). By Theorem 1 on page 215

in Aczél (1966), we get φ(x, y) = d1x + d2y for some constants d1, d2 which implies

w(π, θ) = πd1θd2 for all π, θ ∈ (0, 1). Now, using weak reflexivity, we get

w(tπ, tθ) + w
(
(1− t)π, (1− t)θ

)
= w(π, θ)

for any t ∈ (0, 1), which simplifies to td1+d2 + (1− t)d1+d2 = 1. Since the left-hand side

is strictly increasing in d1 + d2, then d1 + d2 = 1 is the unique solution.

Thus, we have

WK

(
(I1, n1, Y1), . . . , (IK , nK , YK)

)
= f−1

( K∑
k=1

π1−α
k θαk f(Ik)

)

for all K ≥ 2, (Ik)
K
k=1 ∈ RK

+ , (nk, Yk)
K
k=1 ∈ R2K

++, and for some α ∈ R. Due to continuity

of WK , these results extend to cases where nk = 0 or Yk = 0 for some k.

A.2 Proof of Proposition 1

In the proof, we use Proposition 8 and the following lemma.

Lemma 1. There exist two distinct distributions that share the same moments and

Gini coefficients, which are all finite.

Proof. Let Xc be a random variable with the following density function

fc(x) =
(
1 + c sin(2π ln(x))

) 1√
2π
1[0,∞)(x)

1

x
e−

(ln(x))2

2

that depends on parameter c ∈ R. Note that X0 is distributed lognormally with

parameters µ = 0, σ = 1. It can be shown that for c ∈ [−1, 1], all moments of Xc are

finite and do not depend on c.27 Moreover, we show that there are two distinct values

of c such that the Gini coefficients of Xc are equal. Since the Gini coefficient can be

written as G = 1 − 2
∫ 1

0
L(x)/L(1)dx, it suffices to show that

∫ 1

0
Lc(x)dx is equal for

two different values of c, where Lc is the generalized Lorenz curve of Xc.

27See, for example, Schmüdgen (2017).
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Since Lc(Fc(x)) =
∫ x

0
tfc(t)dt, where Fc is the CDF of Xc, we need to show that

there exist two distinct values of c for which the integral of the generalized Lorenz

curve, Ac =
∫ 1

0

∫ F−1
c (x)

0
tfc(t)dtdx, are equal. With some manipulation, we get

Ac =
1√
2π

(a+ bc+ dc2),

where

a =

∫ ∞

−∞
e−

z2

2 ez
(
1−

∫ z

−∞

1√
2π

e−
s2

2 ds

)
dz

b =

∫ ∞

−∞
sin(2πz)e−

z2

2 ezdz −
∫ ∞

−∞
sin(2πz)e−

z2

2 ez
∫ z

−∞

1√
2π

e−
s2

2 dsdz

−
∫ ∞

−∞
e−

z2

2 ez
∫ z

−∞
sin(2πs)

1√
2π

e−
s2

2 dsdz

d =

∫ ∞

−∞
sin(2πz)e−

z2

2 ez
∫ z

−∞
sin(2πs)

1√
2π

e−
s2

2 dsdz.

Now, if b = 0, then we have the result since Ac = A−c for any c ∈ [−1, 1]. First, note

that∫ ∞

−∞
sin(2πz)e−

z2

2 ezdz =

∫ ∞

−∞
sin(2πz)e−

1
2
(z−1)2e

1
2dz = e

1
2

∫ ∞

−∞
sin(2πx)e−

1
2
(x)2dx = 0

as an integral of an odd function. Thus,

b = −
∫ ∞

−∞
sin(2πz)e−

z2

2 ez
∫ z

−∞

1√
2π

e−
s2

2 dsdz −
∫ ∞

−∞
e−

z2

2 ez
∫ z

−∞
sin(2πs)

1√
2π

e−
s2

2 dsdz

= −e
1
2

∫ ∞

−∞

∫ z

−∞
e−

1
2
(z−1)2e−

s2

2

(
sin(2πz) + sin(2πs)

)
dsdz

= −2e
1
2

∫ 1

−∞
e−

1
4
t2
∫ ∞

−∞
e−(x+ 1

2
t)2
(
sin(2π(x+ 1

2
t)) cos(−πt)

)
dxdt

= −2e
1
2

∫ 1

−∞
e−

1
4
t2 cos(−πt)

∫ ∞

−∞
e−s2 sin(2πs)dsdt = 0,

since
∫∞
−∞ e−s2 sin(2πs)ds = 0 as an integral of an odd function.

Suppose there exists a finite set of moments Ω and a function F such that (4) holds.

Suppose L1 and L2 are generalized Lorenz curves of two distinct distributions that

have the same values for the moments in Ω and the same Gini coefficients. Consider a

population partitioned into K subgroups where each subgroup has generalized Lorenz
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curve L1 and denote the vector of moments of L1 by Ω1. Then, the aggregate Gini co-

efficient of the population is equal to G = F
(
G(L1), . . . , G(L1),Ω1, . . . ,Ω1; π1, . . . , πK

)
.

By Proposition 8, we have

F
(
G(L1), . . . , G(L1),Ω1, . . . ,Ω1; π1, . . . , πK

)
=
( K∑

k=1

√
πkθkG(L1)

)2
= G(L1),

since subgroup Lorenz curves are homothetic, θk = πk for all k, and
∑K

k=1 πk = 1.

Next, consider another population partitioned into K subgroups, where one sub-

group has generalized Lorenz curve L1 and the other subgroups have generalized Lorenz

curves L2, and let G̃ denote the aggregate Gini coefficient of this population. Since the

subgroup Gini coefficients and moments are the same as before, we have

G̃ = F
(
G(L1), . . . , G(L1),Ω1, . . . ,Ω1; π1, . . . , πK

)
= G(L1).

But since the subgroup Lorenz curves are not all homothetic, then Proposition 8 implies

G̃ > G(L1), which is a contradiction. Therefore, (4) cannot hold.

Note that, as is shown in the proof of Lemma 1, there exist two distinct distributions

that share the same sequence of moments and Gini coefficients. Therefore, equation

(4) would not hold even if we allowed Ω to be a countably infinite set of moments.

A.3 Proof of Theorem 2

We first show that the within-group inequality term (2) and between-group inequality

term (3) sum up to the aggregate Gini coefficient by showing that GB = G−GW . Let

∆ = E
[
|yi − yj|

]
denote the mean absolute difference in the population. Note that

the aggregate Gini coefficient is equal to ∆/2µ and the within-group inequality term

GW =
(∑K

k=1 πk

√
∆k

)2
/2µ. Define Θ = E

[
1{gi ̸=gj}|yi − yj|

]
. Now,

G−GW =
1

2µ
∆− 1

2µ

( K∑
k=1

πk

√
∆k

)2

=
1

2µ

(
∆−

K∑
k=1

π2
k∆k −

∑
k ̸=l

πkπl

√
∆k∆l

)

=
1

2µ

(
E
[
|yi − yj|

]
−

K∑
k=1

E
[
1{gi=k}1{gj=k}|yi − yj|

]
−
∑
k ̸=l

πkπl

√
∆k∆l

)
=

1

2µ

(
Θ−

∑
k ̸=l

πkπl

√
∆k∆l

)
= GB.
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Next, we show that the decomposition satisfies all the axioms. Since the within-

group inequality term has the form of (1) with α = 1
2
and f(x) = x

1
2 , it satisfies axioms

1-6 by Theorem 1. If all subgroups have identical income distributions, then the Gini

coefficients are equal across subgroups and the income share of each subgroup equals

its population share. In this case, both the aggregate Gini coefficient and the within-

group inequality term in (2) are equal to the common subgroup Gini coefficient. Thus,

between-group inequality is equal to zero and Axiom 7 holds.

Bhattacharya and Mahalanobis (1967) show that the aggregate Gini coefficient can

be written as

G(L) =
∑
k

πkθkGk +G(L̄) +R, (10)

where L̄ is the generalized Lorenz curve after replacing each individual’s income with

the respective subgroup mean and R is a residual term that depends on the amount of

overlap between the subgroup income distributions. R is zero if and only if subgroup

income distributions do not overlap. It is possible to create overlap with within-group

transfers that keep subgroup Gini coefficients constant whenever at least two subgroups

have positive population and income share. Hence, the aggregate Gini coefficient is

aggregative if and only if at most one subgroup, j, has both strictly positive population

and income share. In this special case, the between-group inequality term (3) reduces

to GB = πj + θj −πjθj, which does not depend on subgroup income distributions under

fixed aggregate characteristics. Hence, Axiom 8 holds.

We next show that the decomposition of Gini coefficient into (2) and (3) is the unique

decomposition that satisfies axioms 1-8. Suppose W is a within-group inequality term

for the Gini coefficient that satisfies all eight axioms. First, by Theorem 1,

W
(
(G1, n1, Y1), . . . , (GK , nK , YK)

)
= f−1

( K∑
k=1

π1−α
k θαk f(Gk)

)
,

for all (Gk, nk, Yk)
K
k=1 ∈ R3K

+ , where f is a strictly monotonic function with f(0) = 0

and α ∈ R. Since cf generates the same W as f for any c ̸= 0, we can assume f(1) = 1

without loss of generality.

Now, if there is only one subgroup, j, with strictly positive population and income

share, then by Axiom 8 and equation (10), we get

W = f−1
(
π1−α
j θαj f(Gj)

)
= πjθjGj
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for all πj, θj, Gj ∈ [0, 1]. By taking f of both sides and setting Gj = 1, we get π1−α
j θαj =

f(πjθj) for all πj, θj ∈ [0, 1]. By setting πj = 1, we get f(x) = xα for all x ∈ [0, 1], and

by setting θj = 1, we get f(x) = x1−α for all x ∈ [0, 1]. Thus, we have α = 1− α which

implies α = 1
2
and f(x) = x

1
2 for all x ∈ [0, 1]. Therefore, the decomposition with the

within-group inequality term (2) and between-group inequality term (3) is the unique

decomposition for the Gini coefficient that satisfies axioms 1-8.

A.4 Proof of Proposition 2

In the proof, we use the following lemma.

Lemma 2. Merging the first m ≤ K subgroups into one weakly increases the within-

group inequality of the Gini coefficient. That is,

GW
(
(G1, π1, θ1), . . . , (GK , πK , θK)

)
≤ GW

(
(G̃, π̃, θ̃), (Gm+1, πm+1, θm+1), . . . , (GK , πK , θK)

)
,

where π̃ =
∑m

k=1 πk, θ̃ =
∑m

k=1 θk, and G̃ is the Gini coefficient of the mixture of the

first m subgroups’ income distributions with weights (πk/π̃)
m
k=1. Merging does not affect

within-group inequality if and only if the income distributions of the m subgroups are

identical.

Proof. Let GW
m denote the within-group inequality among the first m subgroups and let

G̃W denote the level of within-group inequality after the first m subgroups are merged

into one. Because G̃ ≥ GW
m =

(∑m
k=1

√
(πk/π̃)(θk/θ̃)Gk

)2
, we have that

G̃W =
(√

π̃θ̃G̃+
K∑

k=m+1

√
πkθkGk

)2
≥
(√

π̃θ̃

m∑
k=1

√
πk

π̃

θk

θ̃
Gk +

K∑
k=m+1

√
πkθkGk

)2

=
( K∑

k=1

√
πkθkGk

)2
= GW .

Moreover, we have G̃ = GW
m if and only if the income distributions of the first m

subgroups are identical, in which case we have G̃W = GW .

The proof proceeds by showing that within-group inequality increases under the

operation while the aggregate Gini coefficient is unaffected. Consider first drawing

a random sample of fraction α > 0 from the population and assigning the sampled
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individuals to a new subgroup. This operation increases within-group inequality term.

To show this, we use equation (2) and the Brunn-Minkowski theorem (Proposition 8),

GW
(
(G1, (1− α)π1, (1− α)θ1), . . . , (GK , (1− α)πK , (1− α)θK), (G,α, α)

)
=
(
(1− α)

K∑
k=1

√
πkθkGk + α

√
G
)2

≥
(
(1− α)

K∑
k=1

√
πkθkGk + α

K∑
k=1

√
πkθkGk

)2
=
( K∑

k=1

√
πkθkGk

)2
= GW

(
(G1, π1, θ1), . . . , (GK , πK , θK)

)
,

(11)

where equality holds if and only if the subgroups have identical income distributions.

Now, by the weak reflexivity, symmetry, and replacement axioms, we have

GW
(
(G1, (1− α)π1, (1− α)θ1), . . . , (GK , (1− α)πK , (1− α)θK), (G,α, α)

)
= GW

(
(G1, (1− α)π1, (1− α)θ1), . . . , (GK , (1− α)πK , (1− α)θK),

(G,απ1, απ1), . . . , (G,απK , απK)
)
.

(12)

Let G̃k and θ̃k denote the resulting Gini coefficient and income share after a 1 − α

sample of subgroup k’s distribution is merged with a απk sample of the aggregate

distribution. By Lemma 2 and symmetry, the right-hand side of (12) is less than or

equal to GW
(
(G̃1, π1, θ̃1), . . . , (G̃K , πK , θ̃K)

)
. Equality holds only if all subgroup have

the same distribution of income. Combining this with (11) we get

GW
(
(G̃1, π1, θ̃1), . . . , (G̃K , πK , θ̃K)

)
≥ GW

(
(G1, π1, θ1), . . . , (GK , πK , θK)

)
The left-hand side of above equation corresponds to within-group inequality after re-

placing the incomes of a random α sample with a random draw from the aggregate

income distribution. As the aggregate Gini coefficient is unchanged while the within-

group inequality term increases, between-group inequality must decrease. Within-group

inequality remains unchanged if and only if the subgroup income distributions are iden-

tical. In this case, between-group inequality is also unaffected.

A.5 Proof of Proposition 3

By Lemma 2 and symmetry, merging any m ≤ K subgroups weakly increases within-

group inequality. Because the aggregate Gini coefficient is unaffected by merging

subgroups, between-group inequality must weakly decrease. Moreover, by Lemma 2,
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within-group inequality does not change if and only if the m subgroups have identical

income distributions. Then between-group inequality does not change either.

A.6 Proof of Proposition 4

Let G̃ denote the Gini coefficient after replacing yi with ỹi for all i. First, note that the

redistribution scheme reduces the aggregate Gini coefficient by α percent:

G̃ =
E
[
|ỹi − ỹj|

]
2µ

=
E
[
|yi − α(yi − µ)−

(
yj − α(yj − µ)

)
|
]

2µ
= (1− α)

E
[
|yi − yj|

]
2µ

= (1− α)G.

It is easy to see that within-group inequality also decreases by α percent:

G̃W =

(∑
k

√
πkθ̃kG̃k

)2

=

(∑
k

√
πkθ̃k

Ek

[
|ỹi − ỹj|

]
2µ̃k

)2

= (1− α)

(∑
k

√
πkπk

Ek

[
|yi − yj|

]
2µ

)2

= (1− α)

(∑
k

√
πkθk

Ek

[
|yi − yj|

]
2µk

)2

= (1− α)

(∑
k

√
πkθkGk

)2

= (1− α)GW ,

where θ̃k is subgroup k’s income share after the replacement of incomes. Finally, since

both the aggregate Gini coefficient as well as the within-group term decrease by fraction

α, between-group term must also decrease by fraction α.

A.7 Proof of Proposition 5

Note that the within-group inequality term can be written as

GW =

(∑
k

√
πkθkGk

)2

=

(∑
k

√
πkθk

Ek

[
|yi − yj|

]
2µk

)2

=

(∑
k

πk

√
Ek

[
|yi − yj|

]
2µ

)2

.

But since lump-sum transfers between subgroups affect neither the mean absolute dif-

ference within subgroups nor the mean income in the population, it follows that such

transfers do not affect within-group inequality.

27



A.8 Proof of Proposition 6

Scale invariance follows directly from the scale invariance of within-group inequality

and the inequality measure itself. To show translation invariance, note first that adding

some fixed amount z to each income in a population with average income µ decreases

the Gini coefficient by a factor of µ/(µ+ z). Let G̃k and θ̃k denote the Gini coefficient

and the income share of subgroup k after translation. Within-group inequality after

translation can then be computed as

G̃W =

(∑
k

√
πkθ̃kG̃k

)2

=

(∑
k

√
πk

(
πk

µk + z

µ+ z

)( µk

µk + z
Gk

))2

=
1

µ+ z

(∑
k

√
π2
kµkGk

)2

=
µ

µ+ z

(∑
k

√
πkθkGk

)2

=
µ

µ+ z
GW ,

that is, within-group inequality also decreases by a same factor of µ/(µ + z). Hence,

the ratio of within-group inequality to between-group inequality remains unchanged.

A.9 Proof of Proposition 8

The inequality together with the equality condition follows directly from the Brunn-

Minkowski theorem. See for example Gardner (2002) for the proof of the Brunn-

Minkowski theorem in the case of two sets. The theorem can be easily generalized

to three sets. The general case of K sets follows by induction.

By associativity of Minkowski addition, we have

|λ1 + λ2 + λ3| = |(λ1 + λ2) + λ3| ≥
(
|λ1 + λ2|

1
2 + |λ3|

1
2

)2
≥
(((

|λ1|
1
2 + |λ2|

1
2

)2) 1
2 + |λ3|

1
2

)2
=
(
|λ1|

1
2 + |λ2|

1
2 + |λ3|

1
2

)2
,

where the inequalities hold as equalities when λ1, λ2, and λ3 are homothetic. The last

claim follows from the fact that homothety is closed under Minkowski addition.

A.10 Proof of Proposition 9

Transfers that increase subgroup inequality by the Lorenz criterion shift the subgroup

Lorenz curves outwards so that the pre-transfers Lorenz regions are subsets of the post-

transfers Lorenz regions. Since A⊕B ⊆ Ã⊕B̃ if A ⊆ Ã and B ⊆ B̃, such transfers also

shift the aggregate Lorenz curve outwards. Hence, aggregate inequality must increase.
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B Extension of the Axiomatic Framework to Other

Inequality Indices

In the main paper, we introduce an axiomatic framework to define decomposability

of inequality indices and show that there is a unique subgroup decomposition for the

Gini coefficient. In this appendix, we discuss how our framework relates to the existing

definitions of decomposability and show that our framework can also be used to derive

the decompositions for the generalized entropy indices and the Foster-Shneyerov indices,

two families of inequality indices that are commonly considered decomposable although

under different frameworks.

B.1 Definitions of Decomposability

In a series of seminal papers, Bourguignon (1979), Shorrocks (1980, 1984), Cowell

(1980), and Cowell and Kuga (1981) define decomposability in terms of a strict ag-

gregativity requirement. In their definition, an inequality index is decomposable if

aggregate inequality is a function of subgroup inequality indices, average incomes, and

population shares. The main result from this literature is that any inequality measure

which satisfies this aggregativity requirement is ordinally equivalent to a generalized

entropy index. These indices include the Theil index, the mean log deviation, and half

the squared coefficient of variation, but not the Gini coefficient.

Foster and Shneyerov (2000) explore a different requirement for decomposability

which they call path independence. They define within-group inequality and between-

group inequality in terms of representative incomes. Within-group inequality is the

level of inequality when all subgroup distributions are re-scaled to have a common

representative income level. Between-group inequality is the level of inequality when

each individual’s income is replaced with their subgroup’s representative income. An

inequality index is decomposable if it can be written as the sum of such a within

and between-group inequality term. From this definition, Foster and Shneyerov (2000)

derive a family of decomposable inequality indices that is uniquely determined (up to

a scalar multiple) by their path independence requirement. This family includes the

mean log deviation and half the variance of logs, but not the Gini coefficient.28

Interestingly, the Foster-Shneyerov indices do not satisfy the aggregativity require-

ment by Bourguignon (1979) and others, while the generalized entropy indices do not

28Note that the variance of logs is not, strictly speaking, an inequality measure as it violates the
Pigou-Dalton principle, see Foster and Ok (1999).
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satisfy the path independence requirement by Foster and Shneyerov (2000). Both these

families of inequality indices are nevertheless commonly considered decomposable. In

this appendix, we show that the standard decomposition formulas for the generalized

entropy and the Foster-Shneyerov indices are consistent with the axiomatic framework

introduced in section III of the this paper. Moreover, we show that if we strengthen

Axiom 7, the decomposition formulas for the generalized entropy and Foster-Shneyerov

indices are the unique formulas that satisfy all the axioms. Importantly, strengthening

the statement of Axiom 7 does not affect the results for the Gini coefficient. Hence,

there exists a common axiomatic framework under which the Gini coefficient, general-

ized entropy indices, and the Foster-Shneyerov indices are all decomposable with unique

decomposition formulas.

We also show that for Atkinson indices, which satisfy aggregativity, there does not

exist a decomposition that satisfies our axioms. The fact that the Gini coefficient

is decomposable under our framework while the Atkinson indices are not shows that

aggregativity is neither a necessary nor sufficient condition for decomposability.

B.2 Definitions

The inequality indices considered in this section require a more restricted domain com-

pared to the Gini coefficient as they are only defined distributions for which a cumu-

lative distribution function exists. Thus, in this appendix, we represent distributions

with their cumulative distribution functions. Generalized entropy indices are a family

of inequality indices defined as

GEα(F ) =


1

α(α−1)

∫ ((
y
µ

)α − 1
)
dF (y) for α ̸= 0, 1∫

ln µ
y
dF (y) for α = 0∫

y
µ
ln y

µ
dF (y) for α = 1,

(13)

where µ is the mean income, α ∈ R is a parameter that indexes different members

of the family, and F is the cumulative distribution function. The Theil index is the

generalized entropy index with α = 1, and the mean log deviation is the generalized

entropy index with α = 0.

The Foster-Shneyerov family, introduced in Foster and Shneyerov (2000), is defined

as

FSq(F ) =

1
q
ln µq(F )

g(F )
for q ̸= 0

1
2
σ2
ln for q = 0,

(14)
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where µq(F ) =
( ∫

yqdF (y)
) 1

q is the power mean of order q, g(F ) = exp(
∫
ln ydF (y)) is

the geometric mean, and σ2
ln =

∫
(ln y − lnµ)2dF (y) is the variance of log income.29

Finally, the family of Atkinson indices, introduced in Atkinson (1970), is defined as

Aε(F ) = 1− µ1−ε(F )

µ
for ε < 1,

where µ1−ε(F ) =
( ∫

y1−εdF (y)
) 1

1−ε is the power mean of order 1− ε.

B.3 Aggregativity and Axiom 7

In the main text, Axiom 7 states that between-group inequality is equal to zero when

all subgroup income distributions are identical. As shown in Proposition 1, aggregate

Gini coefficient in general depends on all moments of the subgroup income distributions.

Hence, we want to allow between-group inequality to be positive when subgroups differ

in any moments.

However, it is reasonable to strengthen Axiom 7 for the generalized entropy and

Foster-Shneyerov indices. The generalized entropy indices depend only on subgroup

means, inequality levels, and population shares, and it is therefore natural that between-

group inequality is zero whenever the subgroups all have the same mean. Similarly, the

Foster-Shneyerov index of order q, conditional on subgroup inequality levels and popu-

lation shares, depends only on subgroup moments of order q, and it is therefore natural

that between-group inequality is zero whenever the subgroup income distributions have

the same qth moment. Hence, the statement of Axiom 7 should reflect the aggregativity

properties of the underlying inequality index. For this purpose, we define the concept

of Ω-aggregativity.

Definition 1. An inequality measure I: D → R+ is Ω-aggregative if there exists a finite

set of moments Ω and a function F : RK
+ × RMK

+ × RK
+ → R+ such that

I = F
(
I1, . . . , IK ,Ω1, . . . ,ΩK ;n1, . . . , nK

)
,

where Ik is the level of inequality in subgroup k, Ωk are subgroup k’s values for the

moments contained in Ω, Ω is the minimal set of moments such that the above formula

holds, and M is the cardinality of Ω. If such an Ω and F do not exist, then I is

Ω-nonaggregative.

29Note that, strictly speaking, only Foster-Shneyerov indices with parameter values q ≥ 1 are in-
equality indices. For other parameter values, the Pigou-Dalton transfer principle is violated.
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Generalized entropy indices and Atkinson indices are inequality measures that can

be written as functions of subgroup inequality levels, average incomes, and population

sizes. Hence, these measures are Ω-aggregative with Ω = {µ}. We call inequality

indices with this property means-aggregative. The Foster-Shneyerov index of order

q ̸= 0 is aggregative with qth moments, that is Ω = {µq}.30 In Proposition 1 in section

IV, we show that the aggregate Gini coefficient can generally not be computed from

subgroup Gini coefficients, population sizes, and any number of subgroup moments.

Thus, the Gini coefficient is Ω-nonaggregative. We use Ω-aggregativity to introduce an

equivalence relation between distributions, which we call Ω-equivalence.

Definition 2. For a given inequality index, we call two distributions Ω-equivalent if

they are identical in all moments contained in Ω. If Ω does not exist, then we call two

distributions Ω-equivalent if they are the same distribution.

With Ω-equivalence, Axiom 7 can be strengthened as follows:

7∗. Normalization. BK is equal to zero if and only if all subgroup income distribu-

tions are Ω-equivalent.

Note that the Gini coefficient satisfies the statement of Axiom 7∗, which is a direct

corollary of Axiom 8 and the fact the Gini coefficient is Ω-nonaggregative. Hence,

the Gini coefficient is decomposable with the same unique decomposition formula even

under this strengthened version of Axiom 7.

B.4 Decompositions of the Generalized Entropy, Foster-

Shneyerov, and Atkinson Indices

We next show axioms 1–6, 7∗, and 8, uniquely determine the standard decomposition

formulas for the generalized entropy indices and the Foster-Shneyerov indices.

Proposition 10. For all α ∈ R, the decomposition of generalized entropy index (13)

GEα(F ) =
K∑
k=1

π1−α
k θαkGEα(Fk) +GEα(F̄ ), (15)

where F̄ is the cumulative distribution function after replacing each individual’s income

with the respective subgroup mean, is the unique decomposition that satisfies axioms

1–6, 7∗, and 8.
30Note also that it is possible to construct an Ω-aggregative inequality index for any arbitrary choice

of Ω by taking convex combinations of appropriate Foster-Shneyerov indices.
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Proof. The within-group inequality term in (15) is an arithmetic average of subgroup

inequalities with a geometric average weight structure in the subgroups’ income and

population shares. It therefore satisfies axioms 1 through 6 as a result of Theorem

1. Because generalized entropy indices are means-aggregative, Axiom 7∗ requires that

between-group inequality is zero if and only if all subgroups have equal means. The

between-group inequality term in (15) is clearly equal to zero if and only if all subgroups

have equal means. Moreover, the between-group inequality term is always constant for

given aggregate characteristics and therefore satisfies Axiom 8.

Next, we show that (15) is the unique decomposition for generalized entropy indices

that satisfies axioms 1-8. Let α ∈ R and suppose that GEα = W+B is a decomposition

of a generalized entropy index of parameter α that satisfies axioms 1-8. Then, by

Axiom 8, B is independent of subgroup income distributions. Hence, we can eliminate

inequality within each subgroup without changing the value of B by replacing each

individual’s income by their subgroup’s average income. By Axiom 4, W (F̄ ) = 0, and

thus B = GEα(F̄ ). Finally, we get W =
∑K

k=1 π
1−α
k θαkGEα(Fk) by subtracting B from

GEα(F ).

Proposition 11. For all q ∈ R, the decomposition of Foster-Shneyerov index (14)

FSq(F ) =
K∑
k=1

πkFSq(Fk) + FSq(F̃ ), (16)

where F̃ is the cumulative distribution function after replacing each individual’s income

with the respective subgroup power mean of order q, is the unique decomposition that

satisfies axioms 1–6, 7∗, and 8.

Proof. Let q ∈ R. Since equation (16) always holds, the Foster-Shneyerov index with

parameter q is Ω-aggregative with Ω containing the qth order moment.

The within-group inequality term in equation (16) fits the form of (1) with f(x) = x

and α = 0. Thus, by Theorem 1, (16) satisfies axioms 1-6. The inequality of power

means31 states that power means with different exponents give the same value if and

only if all arguments are equal. Thus, between-group inequality in (16) is zero if and

only if all subgroups have equal qth order moments, that is, if and only if subgroup

income distributions are Ω-equivalent. Hence, Axiom 7∗ holds. Finally, the condition

in Axiom 8 never holds for any Foster-Shneyerov index with q ̸= 1, and in the case of

31see e.g. Theorem 1 on p. 203 in Bullen (2013)
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q = 1, the index and the decomposition coincides with the generalized entropy index of

parameter α = 0, which is shown to satisfy all axioms in Proposition 10. Thus, Axiom

8 holds.

For uniqueness, let FSq = W + B be a decomposition that satisfies axioms 1-8.

Now, consider a case where all subgroups are Ω-equivalent, that is, all subgroups have

equal qth moments. By Axiom 7∗, between-group inequality is equal to zero and we

get W = FSq(F ). Using equation (16), we get

FSq(F ) =
∑
k

πkFSq(Fk) = W

for all πk ∈ [0, 1] and FSq(Fk) ∈ R+.

Using Theorem 1, we get

f−1
( K∑

k=1

π1−α
k θαk f

(
FSq(Fk)

))
=
∑
k

πkFSq(Fk)

or ∑
k

π1−α
k θαk f

(
FSq(Fk)

)
= f

(∑
k

πkFSq(Fk)
)

(17)

for all πk ∈ [0, 1], θk ∈ [0, 1], and FSq(Fk) ∈ R+, where f is a strictly monotonic

function with f(0) = 0 and α ∈ R. Since cf gives the same W as f for any c ̸= 0, we

can assume f(1) = 1 without loss of generality. By setting FSq(Fk) = 1 for some k and

FSq(Fj) = 0 for all j ̸= k, we get π1−α
k θαk = f(πk) for all πk, θk ∈ [0, 1]. Thus, we must

have α = 0 and hence f(x) = x for all x ∈ [0, 1]. Now, equation (17) becomes∑
k

πkf(FSq(Fk)) = f
(∑

k

πkFSq(Fk)
)
. (18)

for all πk ∈ [0, 1] and FSq(Fk) ∈ R+. The only strictly monotonic solution to equation

(18) is f(x) = ax for some a ̸= 0.32 With normalization f(1) = 1 we get a = 1, and

thus W =
∑

k πkFSq(Fk) for all πk ∈ [0, 1], θk ∈ [0, 1], and FSq(Fk) ∈ R+, and we get

B = FSq(F̃ ) as a residual.

We next turn to the Atkinson indices. These indices are aggregative with means

and therefore ordinally equivalent to generalized entropy indices (Shorrocks, 1984).

However, there is no universally accepted way to decompose Atkinson indices into

32see Aczél (1966).
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within-group and between-group inequality terms that sum to aggregate inequality.33

We show that there cannot exist a decomposition of Atkinson indices that satisfies all

of our axioms. In the proof of the proposition, we show that Axioms 4 and 8 imply

unique expressions the for within-group and between-group inequality terms, but the

implied within-group inequality term does not satisfy Axiom 6 (replacement).

Proposition 12. For any ε < 1, the Atkinson index Aε cannot be decomposed into a

within-group inequality term and a between-group inequality term that satisfy axioms

1− 6, 7∗, and 8 and sum to the aggregate Atkinson index.

Proof. Suppose that Aε = W+B is a decomposition of the Atkinson index of parameter

ε that satisfies axioms 1-8. Since the Atkinson index for any ε < 1 is a monotonic

transformation of a corresponding generalized entropy index, it is means-aggregative.

Thus, by Axiom 8, B is always independent of subgroup income distributions. We can

thus eliminate inequality within each subgroup by replacing each individual’s income

by their subgroup’s mean income without changing the value of B. Hence, B = Aε(F̄ ).

By subtracting B from Aε, we get

W =

( K∑
k=1

πε
kθ

1−ε
k

) 1
1−ε

−
( K∑

k=1

πε
kθ

1−ε
k (1− Aε(Fk))

1−ε

) 1
1−ε

.

The above formula for W does not satisfy the replacement axiom, which is a contra-

diction. Thus, there is no decomposition for Atkinson indices that satisfies axioms

1-8.

C Inference

In this section, we derive the asymptotic confidence intervals for the within and between-

group inequality terms in the Gini decomposition. We show that the plug-in estimators

for the within-group and between-group inequality terms are asymptotically jointly

normally distributed, which allows us to derive the asymptotic variance for these terms

using the delta method. Furthermore, we confirm through simulation exercises that

inference based on the asymptotic variances yields very precise confidence intervals

33The most common decomposition of the Atkinson index was derived by Blackorby et al. (1981)
and consists of a within-group inequality term W and a between-group inequality term B that combine
into the aggregate Atkinson index as A = W +B −WB, and therefore violates our requirement that
A = W +B.
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for lognormally distributed data and sample sizes similar to those in our empirical

application.

C.1 Asymptotic normality

We consider sampling n i.i.d. random vectors Xi = (yi, gi), where yi ∈ R+ is the

income and gi ∈ {1, 2, . . . , K} is the subgroup affiliation of individual i. Let F denote

the cumulative distribution function of yi, Fk the cumulative distribution function of

yi conditional on gi = k, F−k the cumulative distribution function of yi conditional

on gi ̸= k, µ = E[yi], µk = E[yi|gi = k], πk = P(gi = k), and θk = πkµk/µ for

k = 1, . . . , K. Moreover, let ∆ = E
[
|yi − yj|

]
denote the mean absolute difference of

distribution F , ∆k = Ek

[
|yi − yj|

∣∣gi, gj = k
]
the mean absolute difference of subgroup

k, ∆̃k = E
[
1{gi=k}1{gj=k}|yi − yj|

]
= π2

k∆k the adjusted mean absolute difference of

subgroup k, and Θ = E
[
1{gi ̸=gj}|yi − yj|

]
the expected absolute difference of incomes

between individuals from different subgroups. Finally, let GW and GB denote the

within-group and between-group inequality terms for the Gini coefficient of distribution

F and GW
n and GB

n their values computed from a sample of n individuals.

Theorem 3 holds that the pair of within-group and between-group inequality terms

of the Gini coefficient is asymptotically jointly normally distributed and states their

asymptotic covariance matrix.

Theorem 3. If E[y2i ] exists, µ > 0, and ∆̃k > 0 for all k, then

√
n
(
GW

n −GW , GB
n −GB

) d−→ N (0,Σ),

where

Σ =

[
σ2
W σWB

σWB σ2
B

]
,

with the following expressions for the elements in the covariance matrix:

σ2
W =

(
GW

µ

)2

Var(yi) +
K∑
k=1

GW

2µ∆̃k

σ2
∆̃k

−
K∑
k=1

(
GW

µ

) 3
2

√
2

∆̃k

σ∆̃k,µ

−
∑
k ̸=l

2GW

µ

√
∆̃k∆̃l (19)

σ2
B =

(
GB

µ

)2

Var(yi) +
1

4µ2
σ2
Θ +

K∑
k=1

1

4µ2

(∑
l ̸=k

√
∆̃l√

∆̃k

)2

σ2
∆̃k

− GB

µ2
σΘ,µ
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−
K∑
k=1

1

2µ2

∑
l ̸=k

√
∆̃l√

∆̃k

σΘ,∆̃k
+

K∑
k=1

GB

µ2

∑
l ̸=k

√
∆̃l√

∆̃k

σµ,∆̃k

−
∑
k ̸=l

1

µ2

(∑
i ̸=k

√
∆̃i

)(∑
j ̸=l

√
∆̃j

)√
∆̃k∆̃l (20)

σWB =
1

2

(
σ2
G − σ2

W − σ2
B

)
(21)

where

σ2
G =

(
G

µ

)2

Var(yi) +
1

4µ2
σ2
∆ − G

µ2
σ∆,µ

σ2
∆ = 4

∫ ∞

0

∫ ∞

0

|x− y|2dF (y)dF (x)− 4∆2

σ∆,µ = 2

∫ ∞

0

∫ ∞

0

|x− y|xdF (y)dF (x)− 2∆µ

σ2
Θ = 4

K∑
k=1

πk(1− πk)
2

∫ ∞

0

(∫ ∞

0

|x− y|dF−k(y)

)2

dFk(x)− 4Θ2,

σ2
∆̃k

= 4π3
k

∫ ∞

0

(∫ ∞

0

|x− y|dFk(y)

)2

dFk(x)− 4∆̃2
k,

σΘ,µ = 2
K∑
k=1

πk(1− πk)

∫ ∞

0

∫ ∞

0

|x− y|xdF−k(y)dFk(x)− 2Θµ,

σ∆̃k,µ
= 2π2

k

∫ ∞

0

∫ ∞

0

|x− y|xdFk(y)dFk(x)− 2∆̃kµ,

σΘ,∆̃k
= 4π2

k(1− πk)

∫ ∞

0

∫ ∞

0

|x− y|dF−k(y)

∫ ∞

0

|x− y|dFk(y)dFk(x)− 4Θ∆̃k.

Proof. First, note that

GW =

( K∑
k=1

√
πkθkGk

)2

=

( K∑
k=1

√
πkθk

E
[
|yi − yj|

∣∣gi, gj = k
]

2µk

)2

=

( K∑
k=1

√
π2
k

µk

µ

E
[
|yi − yj|

∣∣gi, gj = k
]

2µk

)2

=
1

2µ

( K∑
k=1

πk

√
E
[
|yi − yj|

∣∣gi, gj = k
])2

=
1

2µ

( K∑
k=1

πk

√
∆k

)2

=
1

2µ

( K∑
k=1

√
∆̃k

)2

.

That is, we can write the within-group inequality term in the Gini decomposition as a
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function of the aggregate mean and the subgroups’ adjusted mean absolute differences.

Similarly,

GB = G−GW =
1

2µ
∆− 1

2µ

( K∑
k=1

√
∆̃k

)2

=
1

2µ

(
∆−

K∑
k=1

∆̃k −
∑
k ̸=l

√
∆̃k∆̃l

)

=
1

2µ

(
E
[
|yi − yj|

]
−

K∑
k=1

E
[
1{gi=k}1{gj=k}|yi − yj|

]
−
∑
k ̸=l

√
∆̃k∆̃l

)
=

1

2µ

(
Θ−

∑
k ̸=l

√
∆̃k∆̃l

)
.

Let

µ̂ =
1

n

n∑
i=1

yi,

Θ̂ =
1

n(n− 1)

∑
i ̸=j

1{gi ̸=gj}|yi − yj|,

and
ˆ̃∆k =

1

n(n− 1)

∑
i ̸=j

1{gi=k}1{gj=k}|yi − yj|.

Since µ̂, Θ̂, and ˆ̃∆k are U-statistics, then by Theorem 7.1 in Hoeffding (1948) they are

asymptotically jointly normally distributed with covariance matrix

Σ =



σ2
µ σµΘ σµ∆̃1

· · · σµ∆̃K

σΘµ σ2
Θ σΘ∆̃1

· · · σΘ∆̃K

σ∆̃1µ
σ∆̃1Θ

σ2
∆̃1

· · · σ∆1∆K

...
...

...
. . .

...

σ∆̃Kµ σ∆̃KΘ σ∆̃K∆̃1
· · · σ2

∆̃K


where

σ2
µ = Var(yi),

σ2
Θ = 4E

[
E
[
1{gi ̸=gj}|yi − yj| −Θ

∣∣yi, gi]2]
= 4E

[
E
[
1{gi ̸=gj}|yi − yj|

∣∣yi, gi]2]− 4Θ2
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= 4E
[(

(1− πgi)

∫ ∞

0

|yi − y|dF−k(y)

)2]
− 4Θ2

= 4
K∑
k=1

πk

∫ ∞

0

(
(1− πk)

∫ ∞

0

|x− y|dF−k(y)

)2

dFk(x)− 4Θ2

= 4
K∑
k=1

πk(1− πk)
2

∫ ∞

0

(∫ ∞

0

|x− y|dF−k(y)

)2

dFk(x)− 4Θ2,

σ2
∆̃k

= 4E
[
E
[
1{gi=k}1{gj=k}|yi − yj| − ∆̃k

∣∣yi, gi]2]
= 4E

[
E
[
1{gi=k}1{gj=k}|yi − yj|

∣∣yi, gi]2]− 4∆̃2
k

= 4E
[
1{gi=k}E

[
1{gj=k}|yi − yj|

∣∣yi, gi]2]− 4∆̃2
k

= 4E
[
1{gi=k}

(
πk

∫ ∞

0

|yi − y|dFk(y)

)2]
− 4∆̃2

k

= 4πk

∫ ∞

0

(
πk

∫ ∞

0

|x− y|dFk(y)

)2

dFk(x)− 4∆̃2
k

= 4π3
k

∫ ∞

0

(∫ ∞

0

|x− y|dFk(y)

)2

dFk(x)− 4∆̃2
k,

σΘ,µ = 2E
[
E
[
1{gi ̸=gj}|yi − yj| −Θ

∣∣yi, gi]E[yi − µ
∣∣yi, gi]]

= 2E
[
E
[
1{gi ̸=gj}|yi − yj| −Θ

∣∣yi, gi](yi − µ)
]

= 2E
[
E
[
1{gi ̸=gj}|yi − yj| −Θ

∣∣yi, gi]yi]− E
[
E
[
1{gi ̸=gj}|yi − yj| −Θ

∣∣yi, gi]µ]︸ ︷︷ ︸
=0

= 2E
[
E
[
1{gi ̸=gj}|yi − yj|

∣∣yi, gi]yi]− 2Θµ

= 2E
[
(1− πgi)

∫ ∞

0

|yi − y|dF−k(y)yi

]
− 2Θµ

= 2
K∑
k=1

πk(1− πk)

∫ ∞

0

∫ ∞

0

|x− y|xdF−k(y)dFk(x)− 2Θµ,

σ∆̃k,µ
= 2E

[
E
[
1{gi=k}1{gj=k}|yi − yj| − ∆̃k

∣∣yi, gi]E[yi − µ
∣∣yi, gi]]

= 2E
[
E
[
1{gi=k}1{gj=k}|yi − yj| − ∆̃k

∣∣yi, gi](yi − µ)
]

= 2E
[
E
[
1{gi=k}1{gj=k}|yi − yj| − ∆̃k

∣∣yi, gi]yi]
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− 2E
[
E
[
1{gi=k}1{gj=k}|yi − yj| − ∆̃k

∣∣yi, gi]µ]︸ ︷︷ ︸
=0

= 2E
[
E
[
1{gi=k}1{gj=k}|yi − yj|

∣∣yi, gi]yi − ∆̃kyi

]
= 2E

[
E
[
1{gi=k}1{gj=k}|yi − yj|

∣∣yi, gi]yi]− 2∆̃kµ

= 2E
[
1{gi=k}E

[
1{gj=k}|yi − yj|

∣∣yi, gi]yi]− 2∆̃kµ

= 2E
[
1{gi=k}πk

∫ ∞

0

|yi − y|dFk(y)yi

]
− 2∆̃kµ

= 2πk

∫ ∞

0

πk

∫ ∞

0

|x− y|dFk(y)xdFk(x)− 2∆̃kµ

= 2π2
k

∫ ∞

0

∫ ∞

0

|x− y|xdFk(y)dFk(x)− 2∆̃kµ,

σΘ,∆̃k
= 4E

[
E
[
1{gi ̸=gj}|yi − yj| −Θ

∣∣yi, gi]E[1{gi=k}1{gj=k}|yi − yj| − ∆̃k

∣∣yi, gi]]
= 4E

[
E
[
1{gi ̸=gj}|yi − yj|

∣∣yi, gi]E[1{gi=k}1{gj=k}|yi − yj|
∣∣yi, gi]

− ∆̃kE
[
1{gi ̸=gj}|yi − yj|

∣∣yi, gi]−ΘE
[
1{gi=k}1{gj=k}|yi − yj|

∣∣yi, gi]+Θ∆̃k

]
= 4
(
E
[
E
[
1{gi ̸=gj}|yi − yj|

∣∣yi, gi]E[1{gi=k}1{gj=k}|yi − yj|
∣∣yi, gi]]

−Θ∆̃k −Θ∆̃k +Θ∆̃k

)
= 4E

[
E
[
1{gi ̸=gj}|yi − yj|

∣∣yi, gi]E[1{gi=k}1{gj=k}|yi − yj|
∣∣yi, gi]]− 4Θ∆̃k

= 4E
[
(1− πgi)

∫ ∞

0

|yi − y|dF−gi(y)1{gi=k}πk

∫ ∞

0

|yi − y|dFk(y)
]
− 4Θ∆̃k

= 4πk

∫ ∞

0

(1− πk)

∫ ∞

0

|x− y|dF−k(y)πk

∫ ∞

0

|x− y|dFk(y)dFk(x)− 4Θ∆̃k

= 4π2
k(1− πk)

∫ ∞

0

∫ ∞

0

|x− y|dF−k(y)

∫ ∞

0

|x− y|dFk(y)dFk(x)− 4Θ∆̃k,

σ∆̃k,∆̃l
= 4E

[
E
[
1{gi=k}1{gj=k}|yi − yj| − ∆̃k

∣∣yi, gi]E[1{gi=l}1{gj=l}|yi − yj| − ∆̃l

∣∣yi, gi]]
= 4E

[
E
[
1{gi=k}1{gj=k}|yi − yj|

∣∣yi, gi]E[1{gi=l}1{gj=l}|yi − yj|
∣∣yi, gi]

−∆̃kE
[
1{gi=l}1{gj=l}|yi − yj|

∣∣yi, gi]−E
[
1{gi=k}1{gj=k}|yi − yj|

∣∣yi, gi]∆̃l+∆̃k∆̃l

]
= 4E

[
E
[
1{gi=k}1{gj=k}|yi − yj|

∣∣yi, gi]E[1{gi=l}1{gj=l}|yi − yj|
∣∣yi, gi]

− ∆̃k∆̃l − ∆̃k∆̃l + ∆̃k∆̃l
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= −4∆̃k∆̃l

Since ∂GW

∂µ
= −GW

µ
and ∂GW

∂∆̃k
=
√

GW

2µ∆̃k
are both continuous functions and nonzero

for µ ̸= 0 and ∆̃k ̸= 0 for all k = 1, . . . , K, we get from the delta method that GW is

asymptotically normally distributed with

σ2
W =

(
GW

µ

)2

Var(yi) +
K∑
k=1

GW

2µ∆̃k

σ2
∆̃k

−
K∑
k=1

(
GW

µ

) 3
2

√
2

∆̃k

σ∆̃k,µ
−
∑
k ̸=l

2GW

µ

√
∆̃k∆̃l.

Similarly, since

∂GB

∂µ
= −GB

µ

∂GB

∂Θ
=

1

2µ

∂GB

∂∆̃k

= − 1

2µ

∑
l ̸=k

√
∆̃l√

∆̃k

are continuous functions and nonzero for µ ̸= 0, Θ ̸= 0, and ∆̃k ̸= 0 for all k = 1, . . . , K,

we get from the delta method that GB is asymptotically normally distributed with

σ2
B =

(
GB

µ

)2

Var(yi) +
1

4µ2
σ2
Θ +

K∑
k=1

1

4µ2

(∑
l ̸=k

√
∆̃l√

∆̃k

)2

σ2
∆̃k

− GB

µ2
σΘ,µ

−
K∑
k=1

1

2µ2

∑
l ̸=k

√
∆̃l√

∆̃k

σΘ,∆̃k
+

K∑
k=1

GB

µ2

∑
l ̸=k

√
∆̃l√

∆̃k

σµ,∆̃k

−
∑
k ̸=l

1

µ2

(∑
i ̸=k

√
∆̃i

)(∑
j ̸=l

√
∆̃j

)√
∆̃k∆̃l

Moreover, since the aggregate Gini coefficient is given by G = ∆/2µ, we get from the

delta method that G is asymptotically normally distributed with asymptotic variance

σ2
G =

(
G

µ

)2

Var(yi) +
1

4µ2
σ∆ − G

µ2
σ∆µ,

where

σ2
∆ = 4

∫ ∞

0

∫ ∞

0

|x− y|2dF (y)dF (x)− 4∆2
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σ∆,µ = 2

∫ ∞

0

∫ ∞

0

|x− y|xdF (y)dF (x)− 2∆µ.

Finally, the delta method implies that αGW + βGB is asymptotically normally dis-

tributed for arbitrary constants α and β. Thus, GW and GB are asymptotically jointly

normally distributed. Moreover, since Var(G) = Var(GW+GB) = Var(GW )+Var(GB)+

2Cov(GW , GB) or Cov(GW , GB) = 1
2

(
Var(G)− Var(GW )− Var(GB)

)
, we get that

σWB =
1

2

(
σ2
G − σ2

W − σ2
B

)
.

A corollary of Theorem 3 is that the shares of within- and between-group inequality

in aggregate inequality are also asymptotically normally distributed. Let αW = GW/G

and αB = GB/G denote the share of within-group term and between-group term in

aggregate inequality, respectively, and let αW,n and αB,n denote their values computed

in a sample of size n. Corollary 4 states their asymptotic variances.

Corollary 4. Under the conditions of Theorem 3, we have

√
n
(
αW,n − αW , αB,n − αB

) d−→ N (0,Σ),

where

Σ =

[
σ2
α −σ2

α

−σ2
α σ2

α

]
,

and

σ2
α =

(GB)2σ2
W + (GW )2σ2

B − 2GWGBσWB

G4
,

where σ2
W , σ2

B, and σWB are given in (19), (20), and (21), respectively.

Proof. Since αW = GW/(GW + GB), where GW and GB are asymptotically jointly

normally distributed, and

∂αW

∂GW
=

1− αW

G
,

∂αW

∂GB
= −αW

G
,

which are continuous nonzero functions, by the delta method we get that αW is asymp-
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totically normally distributed with

σ2
α =

(GB)2σ2
W + (GW )2σ2

B − 2GWGBσWB

G4
.

Asymptotic normality and variance of αB are shown similarly. Finally, since

aαW + bαB =
aGW + bGB

GW +GB

which is a continuously differentiable function in GW and GB for arbitrary constants a, b

and since GW and GB are asymptotically jointly normally distributed, then αW and αB

are asymptotically jointly normally distributed by the delta method. Moreover, since

V ar(αW + αB) = V ar(αW ) + V ar(αB) + 2Cov(αW , αB) = 2σ2
α + 2Cov(αW , αB) = 0,

we get Cov(αW , αB) = −σ2
α.

C.2 Simulation

We confirm through simulation exercises that inference based on the asymptotic vari-

ances derived above yields very precise confidence intervals for lognormally distributed

incomes and sample sizes similar to those in our empirical application. Specifically, we

compare the asymptotic confidence intervals to simulated confidence intervals where

we assume that incomes in each subgroup are log-normally distributed with means and

Gini coefficients equal to their sample equivalents and we repeatedly draw samples of

the same size as the samples in our empirical application of section V. Figure 3 plots

the distribution of the sampled within and between-group inequality terms against a

(centered) normal distribution where the variance is derived using the asymptotic result

from Theorem 3. The figure confirms that the formulas for the asymptotic variances

produce very precise confidence intervals for lognormally distributed data and sample

sizes similar to those in our empirical application.
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Figure 3: Asymptotic vs. simulated confidence intervals. We draw i.i.d samples from
lognormal distributions with means and Gini coefficients equal to the observed average incomes
and Gini coefficients of the demographic subgroups in the year 2021. We further set the
probability of sampling from any given demographic subgroup equal to its observed population
share in the same year, and we draw repeated samples with total size equal to the number of
observations in our empirical application (58,101 observations).
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D Subgroup Decompositions of Multivariate Gini

Coefficients

Koshevoy and Mosler (1997) suggest extensions of the Gini coefficient to multivariate

distributions based on the volume of Lorenz zonoids, which are multivariate extensions

of Lorenz regions. The multivariate Gini coefficient for a d-dimensional distribution is

given by the following expression,

Gd =
1

2d − 1

∣∣Zd+1
∣∣ , (22)

where Zd+1 is the Lorenz zonoid and the scaling factor 1/(2d− 1) ensures that the Gini

coefficient for distributions with non-negative support is contained in [0, 1].34

As with Lorenz regions for univariate distributions that we discus in section IV.3 of

the main text, in the case of multivariate distributions we can also define a subgroup

Lorenz zonoid, Zd+1
k , for subgroup k by scaling the subgroup’s Lorenz zonoid with a

vector (πk, θk,1, . . . , θk,d) where πk is the subgroup’s population share and θk,j is the

subgroup’s share of attribute j. Because the aggregate Lorenz zonoid can be computed

as a Minkowski sum of the subgroup Lorenz zonoids (Mosler, 2002), the Gini decompo-

sition of Theorem 2 extends naturally to the multivariate case. That is, within-group

inequality, GW , can be defined as the minimum volume of the aggregate Lorenz zonoid

for given volumes of the subgroup Lorenz zonoids, scaled by the scaling factor 1/(2d−1).

By the Brunn-Minkowski theorem, the minimum volume of the scaled aggregate Lorenz

zonoid is

GW =
1

2d − 1

(
K∑
k=1

∣∣Zd+1
k

∣∣ 1
d+1

)d+1

=

 K∑
k=1

(
πk

d∏
j=1

θk,jG
d
k

) 1
d+1

d+1

.

As in the univariate case, between-group inequality can be computed as the difference

between the aggregate Gini coefficient and the within-group inequality term.

Koshevoy and Mosler (1997) point out that the multivariate Gini coefficient in

(22) is zero when there is no inequality in at least one of the attributes. This means

that the Gini coefficient can be zero even if there is inequality along some, but not

all, dimensions. Because this may be seen as an undesirable property, Koshevoy and

34The Lorenz zonoid for a d-dimensional distribution with cumulative distribution function F is
given by Zd+1(F ) = {(z0(F̃, h), z(F̃, h)), h : Rd → [0, 1] measurable}, where z0(F̃, h) =

∫
Rd h(x)dF̃ (x),

z(F̃, h) =
∫
Rd h(x)xdF̃ (x), and F̃ is obtained by component-wise scaling F by its mean vector.
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Mosler (1997) also discuss an alternative multivariate Gini coefficient that is zero only

if there is no inequality in all dimensions. This alternative Gini coefficient is given by

the following expression,

G̃d =
1

2d − 1

(∣∣Zd+1 ⊕ Cd
∣∣− 1

)
, (23)

where Zd+1 is again the Lorenz zonoid and Cd is the d-dimensional unit cube. Zd+1 ⊕
Cd is referred to as the expanded Lorenz zonoid. Similarly, one can define expanded

subgroup Lorenz zonoids as Zd+1
k ⊕ Cd

k , where Zd+1
k is defined as above and Cd

k is the

d-dimensional unit cube scaled by the vector (πk, θk,1, . . . , θk,d).

It can easily be shown that the expanded Lorenz zonoid for the aggregate distribu-

tion is the Minkowski sum of the expanded subgroup Lorenz zonoids. Therefore, one

can define within-group inequality analogously for this Gini coefficient as the minimum

volume of the expanded aggregate Lorenz zonoid for given volumes of the expanded

subgroup Lorenz zonoids:

G̃W =
1

2d − 1

( K∑
k=1

(∣∣Zd+1
k ⊕ Cd

k

∣∣) 1
d+1

)d+1

− 1


=

1

2d − 1


 K∑

k=1

(
πk

d∏
j=1

θk,j

((
2d − 1

)
G̃k + 1

)) 1
d+1

d+1

− 1


Note that, just like within-group inequality in the univariate case, GW and G̃W are

weighted quasi-arithmetic means of the subgroup Gini coefficients with weights that

depend on population and income shares and do not necessarily sum up to one.

E Arithmetic Interpretation

For the arithmetic interpretation of the Gini decomposition, we consider a finite popu-

lation. The Gini coefficient can then be defined arithmetically as the sum of absolute

income differences between all possible pairs of individuals in a population P , normal-

ized by twice the product of the average income and the total number of such pairs:

G =

∑
i,j∈P |yi − yj|
2µN2

. (24)
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Proposition 13 states that the within-group inequality term in our Gini decompo-

sition is equal to the minimal sum of absolute differences in the population for given

sums of absolute differences in each subgroup, again normalized by 2µN2.

Proposition 13. Let Sk be a collection of real numbers for each k ∈ {1, . . . , K} and

S =
K⋃
k=1

Sk. Then, the following inequality holds:

G =
1

2µN2

∑
x,y∈S

|x− y| ≥ 1

2µN2

( K∑
k=1

√ ∑
x,y∈Sk

|x− y|
)2

= GW , (25)

where µ and N are the mean and the cardinality of S. Equality holds if and only if the

distribution of numbers in each collection Sk is identical.

Proof. Let G(Sk) denote the Gini coefficient computed on the collection of real numbers

Sk and let S denote the union of Sk. Now inequality (25) follows from

1

2µN2

∑
x,y∈S

|x− y| = G ≥ GW =

(
K∑
k=1

√
πkθkG(Sk)

)2

=
1

2µN2

(
K∑
k=1

√
2µkN2

kG(Sk)

)2

=
1

2µN2

( K∑
k=1

√ ∑
x,y∈Sk

|x− y|
)2

,

where µk and Nk are the mean and the cardinality of Sk, respectively, and µ and N are

the mean and cardinality of S, and πk = Nk/N and θk = (Nkµk)/(Nµ). The inequality

above follows directly from Proposition 8.

This result allows for an insightful comparison between our decomposition formula

and the formula by Bhattacharya and Mahalanobis (1967). In that formula within-

group inequality is equal to ∑K
k=1

∑
i,j∈k |yi − yj|
2µN2

, (26)

that is, within-group inequality is equal to the sum of absolute differences between

incomes in all pairs where both individuals belong to the same subgroup, normalized

by 2µN2. Whereas absolute differences between incomes of individuals from the same

subgroup clearly contribute to within-group inequality, this expression has the unde-

sirable property that within-group inequality is less than aggregate inequality even if

all subgroups have identical distributions. Thus, within-group inequality must be be
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larger than (26). Proposition 13 implies that our within-group inequality term is always

greater than (26) and is equal to aggregate inequality when all subgroups have identical

income distributions.

F Illustration with Continuous Distributions

In Figure 1 of the main paper, we illustrate the aggregation of subgroup Lorenz regions

when income distributions are discrete. Figure 4 below illustrates the aggregation of

subgroup Lorenz regions in the case of continuous distributions. In this example, there

are two subgroups with Pareto income distributions. The subgroup Lorenz regions are

shown in the left and the middle panel. In the right panel, the aggregate Lorenz region

corresponding to the two subgroup Lorenz regions is outlined by the solid lines. As

shown in Proposition 7 of the main paper, the aggregate Lorenz region is equal to the

Minkowski sum of the subgroup Lorenz regions.

Figure 4 also illustrates within-group and between-group inequality. The dashed

lines in the rightmost panel outline the aggregate Lorenz region in a counterfactual case

where the subgroup Lorenz regions have the same areas as before but are homothetic.35

Thus, the area of the dashed aggregate Lorenz region equals within-group inequal-

ity and the excess area in the solid aggregate Lorenz region (the shaded area) equals

between-group inequality. As discussed in section IV.3 of the main paper, between-

group inequality results from the subgroup Lorenz regions having different shapes.

G Additional Empirical Applications

In this appendix, we present additional empirical applications and make use of the

fact that lump-sum transfers between subgroups do not affect within-group inequality

(Proposition 5) to further isolate the part of between-group inequality that remains

after differences in average incomes between subgroups are removed.

35Specifically, we consider a counterfactual case where the subgroup income distributions are Pareto
with common parameter values, while the subgroup population shares and areas of the subgroup Lorenz
regions stay the same. Note that making subgroup Lorenz regions homothetic while preserving their
areas may require changing the population shares of the subgroups.
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Figure 4: Illustration of the aggregation of continuous income distributions and between-
group inequality. The left and middle panel show subgroup Lorenz regions, while the right
panel shows the corresponding aggregate Lorenz regions. The solid lines outline the subgroup
Lorenz regions of two different Pareto distributions and the Lorenz region of the correspond-
ing aggregate distribution. The dashed lines outline counterfactual subgroup Lorenz regions
that have the same area as the original subgroup Lorenz regions but are homothetic, i.e., rep-
resenting the same distribution (again Pareto), and the Lorenz region of the corresponding
aggregate distribution. The area of the counterfactual aggregate Lorenz region is equal to
within-group inequality and the shaded area is equal to between-group inequality.

G.1 Income inequality within and between demographic sub-

groups

We first revisit the empirical application of section V, and use Proposition 5 to isolate

the role of differences in subgroup average incomes. Figure 5 shows that while between-

group inequality has remained roughly constant, differences in average incomes between

demographic subgroups now play a smaller role in between-group inequality compared

to the beginning of the sample period. The between-group inequality that remains after

the means were equalized reflects the contribution to aggregate inequality stemming

from differences between subgroups in higher-order moments of the income distribution.

G.2 Gender Earnings Inequality

In this exercise, we apply the subgroup decomposition of the Gini coefficient to study

how differences in male versus female earnings distributions contribute to overall earn-

ings inequality in the United States.

We use data from the Current Population Surveys on earnings of people aged 18-64,
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Figure 5: Household-level income inequality within and between demographic subgroups,
1967–2021. The hatched region shows between-group inequality when differences in average
earnings between demographic subgroups are removed by implementing suitable lump-sump
transfers. The demographic subgroups are defined as in the main text. Asymptotic confidence
intervals are computed using the formulas derived in appendix C.

working full-time, and earning more than 10% of the median, and we group individuals

by sex. Figure 6 shows the evolution of within-group and between-group inequality

since the beginning of our sample period. We document a strong decline in the share of

the aggregate Gini coefficient that can be attributed to differences between the earnings

distributions of men and women (from 12% in 1967 to 1% in 2021). While between-

group inequality has declined over time, within-group inequality has increased by more

so that aggregate earnings inequality is now significantly higher than half a century

ago.

Making use of the fact that lump-sum transfers between subgroups do not affect

within-group inequality, we further isolate the part of between-group inequality that

remains after differences in average earnings between men and women are removed.

While differences in average earnings contributed significantly to the level of aggregate

inequality early in the sample period, eliminating differences in average earnings via

lump-sum transfers hardly reduces the Gini coefficient in recent years, with the re-

maining between-group inequality reflecting differences in higher-order moments of the
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Figure 6: Earnings inequality within and between sexes in the United States, 1967–2021.
The hatched region shows between-group inequality when sex differences in average earnings
are removed by implementing suitable lump-sump transfers. Asymptotic confidence intervals
are computed using the formulas derived in appendix C.

male and female earnings distributions.36 This finding does not mean that the average

earnings of men and women have fully converged. In fact, average earnings of women

in 2021 remain at only 78% of those of men. These differences in means, however,

are small compared to the large variation in earnings within each gender group and

therefore contribute little to aggregate inequality.
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