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Abstract. We study how observed individual characteristics afect earnings of individuals. The 

characteristics we study are individual personality traits (including cognitive ability) and family 

background. We make use of data providing information on the individual characteristics rather 

than estimating them as latent variables. 

Their contribution may be indirect (facilitating the acquisition of education) or direct (perhaps 

afecting productivity). We estimate the fraction of these two contributions through regression 

analysis and structural model, and fnd that the contribution of both pathways is signifcant. 

These characteristics may be in part determined endogenously. To estimate the proportion due 

to original individual characteristics we use measures provided by Polygenic Scores for education 

years and fuid intelligence. The marginal efects of these scores is signifcant and high. The indirect 

contribution (operating though acquisition of college) is around one third of the total efect. 
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1. Introduction 

We study how observed individual characteristics afect earnings of individuals. The character-

istics we study are cognitive ability, bit also personality traits likely to afect earnings and family 

background. An important feature of our study is the use of the data (UK Household Longitudi-

nal Study (UKHLS), also known as Understanding Society) which provides measurements of these 

characteristics. In particular, it contains several tests on cognitive abilities and Big 5 personality 

scores. We can use this information to construct cognitive and non-cognitive scores, respectively, 

rather than estimating them as latent variables. The dataset also ofers detailed information on 

wages and earnings. 1 The use of individual data is essential: the adoption of aggregate data (as 

for example in the Lynn and Vanhanen (2002)) is subject to natural and justifed criticisms (as 

discussed in Ervik (2003)). In particular, the IQ data may be unreliable and the cross country 

comparison difcult. In addition, and more substantially, a simple bivariate correlation does not 

allow any conclusion on the causality direction. 

There are two ways in which these traits may afect earnings: one through the educational 

attainment, the other an efect on earnings independent of education. An important contribution 

of the paper is to disentangle the two components. 

The analysis examines frst simple descriptive statistics on the relation between earnings, educa-

tion and individual characteristics. We then estimate the way in which these individual character-

istics afect the probability of achieving higher education (college degree). In our study we do not 

assume specifc functional forms but estimate the best within a rich family of models. 

The history of the analysis of individual characteristics and earnings is wide. What we add 

to this tradition is a dataset that includes precise information on cognitive skills, personality, 

family background, earnings and genotype of individuals. We use the individual genotypes, recent 

genome-wide association studies and methodologies to construct polygenic scores for educational 

attainment. Our study continues a tradition of investigation (going back to Griliches and Mason 

(1972); Griliches (1976) 2; see also Lindqvist and Vestman (2011) 3 A closer analysis of the data 

1An analysis of the education acquisition in post-war UK, relying on the same data, is reported in Ichino et al. 
(2022). The emphasis is on the evaluation of real and counter-factual higher education policies for given distribution 
of characteristics in the population. 
2These studies used the AFQt for a smaple of army veterans and the National Longitudinal Survey of Young Men 
respectively 
3The authors conclude that 

We fnd strong evidence that men who fare poorly in the labor market in the sense of unemployment 
or low annual earnings lack non-cognitive rather than cognitive ability. However, cognitive ability 
is a stronger predictor of wages for skilled workers and of earnings above the median. 



3 CHARACTERISTICS AND EARNINGS 

seem to add a new perspective to earlier conclusions of studies investigating a similar question 

(see eg Ashenfelter et al. (2000) 4) In this analysis no information on personality traits and family 

background was available, so no direct comparison among these factors was possible. In Hanushek 

et al. (2015) the P IAAC data set is used to estimate in 23 countries and they fnd that on the 

average of the countries, a one SD increase in numeracy skills is associated with an 18 percent 

wage increase among prime-age workers. There is substantial heterogeneity across countries from 

a maximum of 28 per cent (USA) to a minimum of 14 (Sweden). The UK is near the top with 

22.5 per cent. The important contribution Heckman et al. (2006), which like ours attempts at 

explaining a large fraction of labor market and (in their case) behavioral outcomes through the use 

of a low-dimensional vector of cognitive and non-cognitive skills. One of distinctive features of the 

paper is showing that the estimated contribution of latent variables representing these skills may be 

very diferent from that obtained though their noisy measurements (following methods in Hansen 

et al. (2004)). A further step, that we propose here, is to use direct although potentially incomplete 

evidence on the genetic evidence available on these latent factors. This additional data may help 

in improving their estimate (as we discuss later in section 6). The use of the genetic evidence 

extends analysis of the issue of returns that was developed earlier on the basis of identical twins 

(see for example Isacsson (1999); Ashenfelter and Krueger (1994); Miller et al. (1995); Ashenfelter 

and Zimmerman (1997); Bonjour et al. (2003)). The limits of identical twins methodology are well 

known (a word of caution was already in Bound and Solon (1999)), and thus the genetic data make 

the conclusions more robust. 

Organization of the paper. The paper is organized as follows. In section 2 we present the data 

used in the analysis below. Notations and defnitions are presented in section 3. Descriptive and 

linear regression analysis is reported in section 4; non linear estimations and structural models 

are estimated in section 5. The analysis using genetic data is developed in section 6. Section 7 

concludes. 

4The conclusions of these earlier investigations were more skeptical: 

The results of all these studies are surprisingly consistent: they indicate that the return to schooling 
is not caused by an omitted correlation between ability and schooling. Moreover, we fnd no evidence 
that the return to schooling difers signifcantly by family background or by the measured ability 
of the student. 
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2. Data 

We frst review the descriptive evidence in the data concerning the relationship between cognitive 

ability and earnings. We begin by describing the data set used in this paper and key variables of 

interest. 

2.1. Data. In our analysis we use the UK Household Longitudinal Study (UKHLS), also known as 

Understanding Society. This is the largest household panel study in the UK, covering about 40,000 

individuals in each wave since 2009. The participants were sampled from the UK population in 

2009 and are followed every year. Starting from wave 2, the follow-up sample also includes former 

British Household Panel Survey (BHPS) 5 respondents. 

The survey encompasses a wide range of topics, including education, employment and cognitive 

abilities: we review here those that are relevant for our investigation. 

2.1.1. Education. The survey contains a variable describing the highest qualifcation reached by 

the individual. The variable has six categories: degree, other higher degree, A-level or equivalent, 

GCSE or equivalent, other and no qualifcation. This variable is updated in every wave, taking 

into account newly acquired qualifcations, if applicable. We convert this categorical variable to a 

binary degree indicator Di that takes value of 1 whenever individual i reports having a degree as 

highest qualifcation in any wave. 

2.1.2. Wages. In each wave the respondents are asked about their employment status, jobs and 

earnings. We use monthly labour earnings and usual hours worked in a month to construct hourly 

wages. We then defate the hourly wages using the CPI excluding rent, maintenance repairs and 

water charges, an index recommended by the UKHLS (see Fisher et al. (2019)). 

2.1.3. Cognitive score. In wave 3 the participants were administered a set of fve cognitive tests: 

word recall (immediate and delayed), serial 7 subtraction, number series, verbal fuency and numeric 

ability. The UKHLS then summarizes the results into counts of correct answers to each test. There 

are 40,889 individuals with non-missing test results out of the full sample of 49,692 respondents in 

wave 3. We then estimate the cognitive score using the maximum likelihood confrmatory factor 

5The BHPS is a predecessor of the UKHLS. The BHPS ran from 1991 to 2008 covering about 10,000 individuals. In 
the fnal wave of the BHPS, the respondents were asked if they wished to continue as part of the UKHLS; about 80% 
chose to continue. 



5 CHARACTERISTICS AND EARNINGS 

analysis, adapting the model of Johnson and J.Bouchard (2005). For more detailed information, 

see section H.1. 

2.2. Big 5 score. In wave 3, adult respondents were also given a short 15-item Big 5 personality 

test. Each test is a separate statement (for example, ”I see myself as someone who does a thor-

ough job”) that the respondents can disagree (1) or agree (7) with. The score for each domain 

- agreeableness, conscientiousness, extraversion, neuroticism and openness - is a rounded average 

of answers to the corresponding three sub-domain questions. There are 40,544 individuals with 

non-missing Big 5 personality test results (81.59% of full sample). Furthermore, 38,034 individuals 

have both non-missing Big 5 and cognitive test results. We use the principal component analysis to 

combine the fve domain scores into single Big 5 score. For more detailed information, see section 

H.2. 

2.3. Family score. All adult respondents are asked basic questions about their parents. In partic-

ular, we use highest educational qualifcation and employment status at the time the respondents 

were 14 years old. First, we convert the highest educational qualifcation into years of schooling 

by assigning average years of education among individuals of same gender and birth cohort with 

the corresponding qualifcation. Second, we convert the categorical variable with parent’s employ-

ment status - working, not working, deceased, absent - into four indicator variables, separately for 

each parent. We then combine the years of education and parental status indicators into family 

advantage score using the principal component analysis. We again use the frst component, which 

captures 23% of the data variation, and assigns positive weights to education and working status 

and negative weights to having deceased or absent parents. 

Our working sample consists of wave 3 respondents with non-missing cognitive and Big 5 scores. 

We also restrict our sample to those born between 1950 and 1989 with non-missing degree indicator. 

Furthermore, we select only those who have been observed in the survey at least once between ages 

25 and 65. This flter helps us remove individuals who have not yet completed their education 

phase or those who have only been observed past retirement. The fnal sample consists of 26,564 

individuals and 234,757 person-wave observations. 

We generate two working datasets: panel and cross-sectional. The panel dataset contains up to 

12 observations for each person in our working sample. The observations correspond to waves of 

the UKHLS survey (2009-22). 
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Using observations from all waves of the UKHLS, we also create predicted lifetime earnings. 

We frst estimate wage age profles using fxed efects estimator and allowing gender and college 

degree to change the slope of the age profles. In our estimations we use the restriction dictated 

by the economic theory that wage age profle is fat towards the end of the career (Heckman 

et al. (1998); Lagakos et al. (2018)). For more detailed information, see section H.3. Using the 

estimated profles, we create predicted earnings over all ages and calculate discounted present value 

of predicted lifetime earnings for each individual in the analysis sample. 

In the cross-sectional analysis we use two measures of predicted wages: predicted wage at age 

45 and discounted present value of predicted wages over the lifecycle. 

3. Notation and Definitions 

We summarize below the notation and variables used to model acquisition of education and 

determination of earnings. Θ is the set of intelligence values; X the set of family background; 

Y the set of non-cognitive factors afecting education acquisition. The product space of these 

individual characteristics is Z ≡ Θ × X × Y . 

Individuals can acquire human capital: we denote H ≡ {nc, c} set of human capital values, where 

nc stand for non-college, and c college. Human capital can be acquired by provision of efort: we 

let E ⊆ R+ a compact set of eforts levels; π(e, θ) probability of achieving a college education with 

efort e. 

A population consists of set of individuals of diferent ages, with A ≡ {1, . . . , L} ⊆ N is the set 

of productive ages, in units of one year; N is the set of biological ages. Individuals discount the 

future: δ ∈ (0, 1) is the discount factor, or, in diferent interpretation, the probability of dying in 

one year. 

The next variables describe the population. The distribution of characteristics is denoted by the P 
vector (ξ(z) : z ∈ Z), ξ(z) = 1 − δ, where ξ(z) ≥ 0 is fraction of children of type Z, entering the z 

population every year; ∆(H × Z × A) probability distributions of the population, generic element 

µ. We denote w(h, θ, a) wage of type (h, θ, a). Finally C(e; z) is efort cost at efort e for type z. 

Note that the (x, y) pair only enters into the efort cost in education acquisition. 

3.1. Wages and equilibrium. At steady state, the sequence of wages for diferent ages is given 

for the individual. We assume the utility in a year of a person is his or her wages for the current 
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year. The only way the agent can afect his own future stream of incomes is though the education, 

for which an efort cost is paid in the period before graduation age. 

We defne the future discounted sum of wage incomes, starting at the frst earning year, for a 

∗given µ : 

retX 
δi−1(1) W (h, θ, δ) ≡ w ∗ (h, θ, i) 

i=gr 

∗Note that the µ is constant over time. 

The agent solves the optimal choice of education at a time before graduation: 

(2) max (π(e) (W (c, θ, δ) − W (nc, θ, δ)) − C(e; z)) . 
e∈E 

We will consider cost of efort functions of the form: 

c(e)
(3) C(e; z) = 

Γ(z) 

This problem (2) gives an optimal policy e ∗(z) for any type z as function of the wage schedule, 

∗ w , which appears implicitly in the W function. 

4. Regression Data Analysis 

In this section, we discuss the natural regression analysis of the key variables of interest. These 

observations will motivate the theoretical framework we present in section 5. 

First, we explore the relationship between cognitive score, Big 5 and family advantage scores on 

probability of obtaining a college degree. Figure (1) plots average share of individuals with college 

degree in each quintile of individual characteristics. As expected, people with higher cognitive 

score and more favorable family background are more likely to have a college degree. The fgure 

also suggests that there may be some complementarity between the two variables: improvement in 

family background appears to have slightly larger efect on college shares when cognitive ability is 

also high. 

The regression estimates presented in Table 1 support similar conclusions. Higher values of 

cognitive, Big 5 and family advantage scores are all associated with higher chances of getting a 

college degree. A one standard deviation (sd) higher cognitive ability score increases the probability 

of getting a college degree by about 14-16 percentage points (pp), while 1 sd higher family advantage 
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Figure 1. College share by quintiles of individual characteristics 
Notes: the fgure plots average share college degree in the working sample by quintiles of individual characteristics 
scores. The sample includes UKHLS wave 3 observations born between 1950 and 1989, with non-missing college, 
cognitive and Big 5 scores. Observations were weighted using the survey response weights. Error bars correspond to 
95% confdence intervals. 

score increases it by about 5-10 pp. The results also suggest mild relationship between personality 

traits and educational attainment (up to 2 pp per 1 sd higher Big 5 score). The estimates display 

positive complementarity between cognitive ability and family background, although the magnitude 

is mild. The table also reports the evolution of these associations across cohorts. While the 

correlation with intelligence remained nearly fat, the efect of favorable family background became 

stronger over time. 

Second, we are interested in the relationship between wages, college indicator and individual 

characteristics. Figure 2 plots average log predicted wages at age 45 by college indicator and 

cognitive score quintiles. As expected, both college degree and higher cognitive ability are associated 

with higher wages. The diference in log wages between top and bottom quintiles (cognitive score 

premium) appears to be similar between older workers with and without college degree. However, 

in the younger cohort the cognitive score premium is stronger among workers with college degree. 
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Born in 1950-64 Born in 1960-79 Born in 1980-94 

(1) (2) (3) (4) (5) (6) 
OLS Logit ME OLS Logit ME OLS Logit ME 

Cog score 0.137∗∗∗ 0.152∗∗∗ 0.151∗∗∗ 0.172∗∗∗ 0.139∗∗∗ 0.160∗∗∗ 

(0.005) (0.006) (0.005) (0.007) (0.008) (0.011) 

Fam score 0.049∗∗∗ 0.053∗∗∗ 0.076∗∗∗ 0.087∗∗∗ 0.083∗∗∗ 0.096∗∗∗ 

(0.005) (0.008) (0.006) (0.008) (0.008) (0.011) 

Big 5 score 0.006 0.015∗ 0.010 0.016∗ 0.016∗ 0.022∗ 

(0.005) (0.006) (0.006) (0.006) (0.008) (0.009) 

Cog score × Fam score 0.028∗∗∗ 0.036∗∗∗ 0.035∗∗∗ 

(0.004) (0.004) (0.006) 

Cog score × Big 5 score -0.004 -0.005 0.001 
(0.004) (0.005) (0.006) 

Obs. 9,539 9,539 10,586 10,586 5,440 5,440 

Standard errors in parentheses 
∗ p < 0.01, ∗∗∗ p < 0.05, ∗∗ p < 0.001 

Table 1. Probability of college degree by individual characteristics 
Notes: the table reports regression results with college indicator as the dependent variable separately in each birth 
cohort. Logit ME are estimates of the marginal efects after logit regression computed to be comparable to the OLS 
estimates. All individual characteristics scores are standardized to mean 0 and standard deviation 1. The sample 
includes UKHLS wave 3 observations born between 1950 and 1989, with non-missing college, cognitive and Big 5 
scores. The regressions were weighted using the survey response weights. Standard errors clustered at the survey 
sampling unit are reported in parentheses. 

Table 2 reports estimation results of log predicted wages (OLS) or level of predicted wages 

(Poisson) at age 45 on college indicator and individual characteristics. Both sets of coefcients can 

be interpreted as wage semi-elasticities. For example, workers with a college degree have about 

40% higher wages compared to workers without a degree. Similarly, a 1 sd higher cognitive ability 

score is associated with almost 15% increase in real hourly wages of 1950-64 birth cohort. The 

cognitive score premium almost halves in 1980-89 birth cohort, consistent with the visual evidence 

above. 

4.1. Panel data analysis. The analysis reported in the two tables Figure 2 and Table 2 is based 

on cross-sectional variation in the predicted wages at age 45. In addition to that we can use the 

panel dimension of the UKHLS to explore if age profles difer with intelligence. For this part 

of the analysis we use observed wages in the data instead of the predicted series. The estimated 

profles are presented in Figure 3. Note that within transformation of the panel data removes 

level diferences between college and non-college workers. The estimates confrm that age profles 

of college-educated workers are steeper. Among college-educated workers, the slope of wage-age 
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Figure 2. Average wage by college and cognitive score quintiles 
Notes: The fgure plots average predicted log real hourly wages at age 45 across birth cohorts by college indicator 
and cognitive score quintiles. The sample includes UKHLS wave 3 observations born between 1950 and 1989, with 
non-missing college indicator, cognitive and Big 5 scores. Observations were weighted using the survey response 
weights. Error bars correspond to 95% confdence intervals. 

profle seems increase slightly with cognitive ability score. However, the magnitude of an additional 

efect from higher cognitive score is mild at best. 

The above estimates suggest that while college degree and higher cognitive ability each contribute 

to higher wages, their interaction has negligible efect on either the level or the slope lifetime wage 

profles. 

Finally, we estimate a simple SEM system of wages and college attainment as functions of 

individual characteristics to get an approximate estimate of their indirect and direct efects. The 

results are reported in Table 3. 

5. Non-linear estimation 

5.1. Model of efort. In this section we proceed beyond descriptive statistics. We formulate and 

test a model of the probability of acquiring college, and estimate the relevant parameters. 

We begin by examining the the restrictions imposed on the probability of getting a college 

degree that can be derived from the assumption that such probability is induced by an optimal 
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Born in 1950-64 Born in 1960-79 Born in 1980-89 

Male 

College 

Cog score 

Fam score 

Big 5 score 

College × Cog score 

College × Fam score 

College × Big 5 score 

Constant 

Obs. 

(1) 
OLS 

0.220∗∗∗ 

(0.018) 

0.403∗∗∗ 

(0.026) 

0.125∗∗∗ 

(0.012) 

0.027∗ 

(0.011) 

0.005 
(0.012) 

0.013 
(0.025) 

-0.007 
(0.025) 

-0.022 
(0.027) 

2.364∗∗∗ 

(0.014) 

6,933 

(2) 
Poisson 

0.244∗∗∗ 

(0.014) 

0.434∗∗∗ 

(0.021) 

0.151∗∗∗ 

(0.009) 

0.029∗∗ 

(0.009) 

0.003 
(0.008) 

-0.005 
(0.020) 

-0.007 
(0.018) 

-0.016 
(0.017) 

2.492∗∗∗ 

(0.011) 

6,896 

(3) 
OLS 

0.189∗∗∗ 

(0.015) 

0.436∗∗∗ 

(0.019) 

0.121∗∗∗ 

(0.010) 

0.022∗ 

(0.010) 

-0.003 
(0.012) 

0.020 
(0.019) 

0.035∗ 

(0.017) 

-0.013 
(0.018) 

2.461∗∗∗ 

(0.014) 

8,676 

(4) 
Poisson 

0.208∗∗∗ 

(0.012) 

0.434∗∗∗ 

(0.015) 

0.140∗∗∗ 

(0.008) 

0.035∗∗∗ 

(0.008) 

0.019∗ 

(0.009) 

-0.007 
(0.014) 

0.027 
(0.015) 

-0.025 
(0.014) 

2.584∗∗∗ 

(0.011) 

8,582 

(5) 
OLS 

0.114∗∗∗ 

(0.021) 

0.374∗∗∗ 

(0.021) 

0.069∗∗∗ 

(0.014) 

0.034∗∗ 

(0.012) 

0.018 
(0.011) 

0.030 
(0.022) 

-0.001 
(0.018) 

-0.002 
(0.019) 

2.621∗∗∗ 

(0.016) 

4,394 

(6) 
Poisson 

0.147∗∗∗ 

(0.015) 

0.381∗∗∗ 

(0.019) 

0.079∗∗∗ 

(0.011) 

0.030∗∗ 

(0.010) 

0.022∗ 

(0.009) 

0.027 
(0.017) 

0.002 
(0.017) 

-0.007 
(0.016) 

2.687∗∗∗ 

(0.013) 

4,377 

Standard errors in parentheses 
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001 

Table 2. Determinants of wage at 45: college and individual character-
istics 

Notes: the table reports regression results with predicted wages at age 45 as the dependent variable. Column 1 
reports results from OLS regression of log predicted wages at age 45 and column 2 reports results from Possion 
regression of level of predicted wages at age 45. The individual characteristics scores are standardized to mean 0 
and standard deviation 1. The sample includes UKHLS wave 3 observations born between 1950 and 1989, with 
non-missing college, cognitive and Big 5 scores. The regressions were weighted using the survey response weights. 
Standard errors clustered at the survey sampling unit are reported in parentheses. 

choice of efort. The conclusion we report is that the restrictions are only the natural qualitative 

ones; specifcally, that of the function being increasing in the incentive of obtaining the degree, 

upper-semicontinuous in the variable expressing the net beneft. 

5.2. Formulation of the problem. We consider the space of eforts R+. A probability of obtain-

ing the college degree is a function of the efort. We defne the set of such functions: 

Defnition 5.1. Π is the set of functions π : R+ → [0, 1] that are strictly increasing, concave, 

π(0) = 0, lime→+∞ π(e) = 1, continuous at 0. 
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Figure 3. Wage age profles, college and cognitive ability 
Notes: the fgure plots estimated age profles of log real hourly wages by college and cognitive score. The estimates 
were obtained using fxed efects regression weighted using cross-sectional response weight from wave 3 and with 
standard errors clustered at an individual level. The sample includes UKHLS wave 3 observations born between 1950 
and 1989, with non-missing college, cognitive and Big 5 scores. Each individual has up to twelve wage observations. 
Shaded areas correspond to 95% confdence intervals. 

Taking into account the form (3) of the efort cost, the optimal efort choice problem can be 

formulated as follows: 

Defnition 5.2. For a given discounted wage diference ∆(W, δ) and a cost reduction value Γ(z), 

the optimal efort problem solves: � � 
c(x)

(4) max π(x)∆(W, δ) − : x ≥ 0 . 
Γ(z) 

We denote by the generic term A the quantity which is really relevant in efort choice: 

(5) A ≡ Γ(x)∆W (θ, δ). 

By relabeling the efort in terms of the units of cost we can formulate the problem of the choice 

of the optimal efort for any non-negative real number A as: 

(6) H(A; π) ≡ argmax {π(x)A − x : x ∈ R+} 
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Born in 1950-64 Born in 1960-79 Born in 1980-89 

Poisson Logit Poisson Logit Poisson Logit 
Pred. wage 45 College Pred. wage 45 College Pred. wage 45 College 

Male 0.244∗∗∗ 0.168∗∗ 0.207∗∗∗ -0.027 0.147∗∗∗ -0.245∗∗ 

(0.016) (0.056) (0.013) (0.051) (0.018) (0.084) 

College 0.435∗∗∗ 0.448∗∗∗ 0.398∗∗∗ 

(0.020) (0.015) (0.019) 

Cog score 0.154∗∗∗ 0.896∗∗∗ 0.144∗∗∗ 0.793∗∗∗ 0.098∗∗∗ 0.704∗∗∗ 

(0.009) (0.040) (0.007) (0.034) (0.009) (0.049) 

Fam score 0.314∗∗∗ 0.401∗∗∗ 0.424∗∗∗ 

(0.047) (0.038) (0.049) 

Big 5 score 0.090∗ 0.072∗ 0.095∗ 

(0.035) (0.029) (0.040) 

Cog score × Fam score 0.007 0.064 0.081 
(0.046) (0.040) (0.046) 

Cog score × Big 5 score -0.113∗∗ -0.084∗∗ -0.051 
(0.037) (0.032) (0.044) 

Marginal efect of cognitive score on predicted wages at age 45 

Indirect efect 0.064 0.069 0.056 
(0.004) (0.003) (0.004) 

Total efect 0.218 0.214 0.154 
(0.009) (0.007) (0.010) 

Obs. 9,496 10,488 5,419 

Standard errors in parentheses 
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001 

Table 3. SEM of wages, college and cognitive ability 
Notes: the table reports SEM regression results with predicted wages at age 45 and college as the dependent variables. 
The individual characteristics scores are standardized to mean 0 and standard deviation 1. The sample includes 
UKHLS wave 3 observations born between 1950 and 1989, with non-missing college, cognitive and Big 5 scores. The 
regressions were weighted using the survey response weights. Standard errors clustered at the survey sampling unit 
are reported in parentheses. 

It is convenient to present the problem optimization problem in a form, which is closer to the 

classical formulation of the conjugate function in convex analysis. Thus we defne: 

(7) h(α; π) ≡ argmax {π(x) − αx : x ∈ R+}. 

1The maximization problems in (6) at A has the same solution as the problem (7) for α = A . 

5.3. Estimation problem. Our data describe a frequency of college degree for a given vector z 

of individual characteristics, an observed vector of wage paths W (h, θ, a). 
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Our unknowns are the function giving the probability of college degree for a given efort, repre-

sented by the function π, and the discount factor δ. We assume the function Γ to be linear, with 

unknown coefcients. Our problem is to characterize the set of functions P : R+ → [0, 1] of the 

variable A such that, for some π ∈ Π: 

(8) P (A) = π(H(A; π)). 

An equivalent problem, and the one we consider below, is that of fnding a function Q such that 

Q(α) = π(h(α; π)). In general H and h are multivalued closed valued functions. 

Recalling the defnition (5.1) of probability of college for given efort, we defne: 

Defnition 5.3. The set of endogenous probabilities is the set Q of multivalued functions Q : R+ → 

[0, 1] that are decreasing, closed valued, with limα→0 Q(α) = 1, Q(α) = 0 for some α > 0. 

The function Q icorresponds to the observed data (a probability of college associated with the 

combination of incentives –the college premium – and the cost of efort associated with a profle 

of family background and personality). A simple example will illustrate a small difculty in deter-

−1
mining whether a function π ∈ Π exists that induces a given function Q. Let Λ(α) ≡ (1 + e−α) 

be the logit, and defne: 

(9) Q(α) = min{2(1 − Λ(α)) + C, 1}) 

For any C ≥ 0 the function in (9) is decreasing, Q(0) = 1, limα→+∞ Q(α) = 0. But with C = 0, 

1at α close to 0 the derivative Q ′ is approximately α , so it is not integrable. So at C = 0 there isα 

no π that induces the Q globally. 

5.4. Diferentiable probability. We deal frst with the simpler case in which the multivalued 

function Q is a continuously diferentiable function. Below we consider 0 < α < α < +∞. 

Proposition 5.4. For any function Q ∈ Q which is continuously diferentiable strictly decreasing 

in the interval [α, α], with Q(α) = 0, Q(α) = 1, there exists a continuously diferentiable function 

π ∈ Π such that for all α ∈ R+, Q(α) = π(h(α; π)). 

Proof. Note that Q(α) = 0 for α > α, so we may take the boundary condition 

(10) h(α) = 0. 
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Consider the ordinary diferential equation 

dh Q ′ 
(11) = , α > 0. 

dα α 

We now defne the function π as the solution of 

(12) π(h(α)) = Q(α) 

The function h satisfes the equation (11), which is the frst order necessary and sufcient conditions 

for the problem (7), namely π ′ (h(α)) = α. Thus our claim follows. □ 

A similar result can be proved for the more general case described in defnition (5.3). 

Proposition 5.5. For any function Q ∈ Q, defned in the interval [α, α], that satisfes: Q(α) = 0, 

Q(α) = 1 , there exists a continuous concave function π ∈ Π such that for all α ∈ R+, Q(α) = 

π(h(α; π)). 

Proof. Construct a sequence of nested partitions of the interval [α, α] not including the (at most 

countable) points at which Q is not single valued with norm tending to zero. Call n the index of 

the partitions. Set hn(α) = 0 and for every element in the partition call 

Q(αn) − Q(αn )k k−1(13) ∆hnk ≡ 
αn 
k 

and defne Qn and hn at each point in the partition as the sum of the partial increments. To each 

such Qn corresponds a function πn ∈ Π which is piece-wise linear concave, uniformly Lipschitz (in 

α and n). By Ascoli-Arzelà’s theorem there is a limit function π which is the claimed function. □ 

5.5. Coefcient Estimations. In this section we present the estimation results for diferent func-

tional forms for the dependence of the probability of college on efort. The comparison between 

estimated coefcients and marginal efects obtained in diferent models will provide an estimate 

of the robustness of the results to diferent functional specifcations. We consider the following 

models: 

(1) linear: P (A) = A; 

exp(A)(2) logit: P (A) = ;1+exp(A) 

(3) cutof power: P (A) = min {max {A, 0} , 1}υ , υ ∈ R+; 
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exp(A)(4) power of logit: P (A) = , ∀υ ∈ R+.1+exp(A) 

The family of power functions in (3) is rich, in the sense that it allows a set of functions of 

diferent curvatures. The reason for the introduction of the power of logit model (number 4 in the 

list) is that (3) poses a restriction on the predicted relationship between independent variables and 

college outcome that is not observed in the data: once the parameters in the function Γ are given, 

when the value of A is negative the fraction of college should be zero, independently of the value 

of A. This is not what we observe, hence we enrich the set of models considered allowing (4). 

An important component of A is the discounted wage diference over the working lifetime, denoted 

∆W (θ, δ), which we call college premium. To compute this variable we ft the following linear 

regression: 

(14) Wi,δ = φ0 + φ1Zi + φ2 · 1{Hi = c} + φ3 · Zi · 1{Hi = c} + ui 

where Wi,δ is the discounted present value of annualised predicted wages6 (in thousands of pounds) 

given the discount factor δ and Zi is the vector of cognitive, Big 5 and family advantage scores. 

Then, we calculate ∆W (Z, δ) = φ̂2 + φ̂3Zi as average college diference in annualised predicted 

wages given individual characteristics in Z. 

This allows us to create variable equivalent to A in the dataset and ft the models (1)-(4) to the 

observed college indicator. We do the estimation of models (3) and (4) in two steps, borrowing 

the idea from threshold regression. First, we fx the values of the discount factor δ and power υ. 

In particular, we choose a coarse grid for δ = (0.905, 0.925, 0.945, 0.965, 0.985) motivated by prior 

estimates of discount factor in the literature. For power, however, we choose fner and wider grid 

ranging from 0 to 5, since we do not have a strong prior. In the second step, we choose the pair 

(δ, υ) that minimises the root mean squared error (RMSE) of the residuals. Figure (4) reports 

the heat-map for the RMSE in the power of logit model (4a) and cutof power (4b) estimations. 

The optimal pair (δ, υ) is indicated by the white dot. The minimum value of RMSE is achieved 

at a discount factor of 0.905, the same for both models7 . With that discount, the min-RMSE 

power is 2.95 for the power of logit model (RMSE = 0.4291), and 1.2 for the cutof power model 

(RMSE = 0.4292). 

6Annualised wages = hourly wages × 40 hours × 52 weeks 
7We, therefore, use same value when ftting models (1) and (2). 
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(a) Power of logit model (b) Power model 

Figure 4. Heat-maps of RMSE for the power of logit and power model. 
Panels as indicated in the caption. 

Notes: the fgure plots the RMSE of residuals from frst-step estimations of cutof power (right) and power of logit 
models (left) across tentative values of the discount factor δ and power υ. Higher values of RMSE are coloured 
lighted, and lower values - darker. The optimal pair (δ,̂ υ̂) is indicated by a white dot in each plot. The estimation 
sample is based on UKHLS wave 3 born between 1950 and 1989 with non-missing college, cognitive and Big 5 scores. 

5.6. Marginal Efects. The next table (4) presents the estimated marginal efects for diferent 

estimation models. In all cases we use the optimal pair of estimated functions and discount for 

OLS, logit and the two classes of models. The frst column reports results for the linear model, 

the second the standard logit, the third for the power function, and the fourth the model with the 

power of logit. The college premium is computed at the discount factor value that minimizes the 

RMSE, 0.905. All independent variables, including the college premium, are standardized, so the 

sizes of the marginal efects are comparable. 

The marginal efects are substantially stable across diferent models. The marginal efect of the 

standardized cognitive score is the largest, and is approximately twice as large as that of the family 

background, and two to three times as large as that of the Big 5 score and of the standardized 

lifetime college premium. 

Table (4) reports the marginal efects of variables with the standard deviation as unit. To 

evaluate the efect of college premium we may prefer to measure the college premium variable as 

lifetime discounted diference of the two values (college and non-college) in thousands of pounds. 

This variable has a mean of 36.9, and standard deviation of 9.8. From the two last models in table 

(4) we see that the additional £1,000 in college premium raises the probability of college by about 

half of a percentage points (the marginal value is 0.00429 by direct estimation). 

In summary, the results of the model estimation are largely in agreement with those obtained 

with more elementary means, as already reported in fgure (1) and in table (1). 
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(1) (2) (3) (4) 
Cutof Logit

OLS Logit 
power power 

Cog score 0.122∗∗∗ 0.096∗∗∗ 0.113∗∗∗ 0.109∗∗∗ 

(0.005) (0.007) (0.005) (0.006) 

Fam score 0.062∗∗∗ 0.053∗∗∗ 0.059∗∗∗ 0.058∗∗∗ 

(0.005) (0.006) (0.005) (0.005) 

Big 5 score 0.024∗∗∗ 0.033∗∗∗ 0.028∗∗∗ 0.028∗∗∗ 

(0.003) (0.004) (0.003) (0.004) 

College premium, std 0.029∗∗∗ 0.060∗∗∗ 0.041∗∗∗ 0.042∗∗∗ 

(0.006) (0.009) (0.007) (0.008) 

Obs. 25,588 25,588 25,588 25,588 
RMSE 0.43 0.43 0.43 0.43 
College premium mean 37.85 37.85 37.85 37.85 
College premium sd 10.10 10.10 10.10 10.10 
Delta 0.905 0.905 0.905 0.905 
Power 1.20 2.95 

Standard errors in parentheses 
∗ p < 0.01, ∗∗∗ p < 0.05, ∗∗ p < 0.001 

Table 4. Probability of College: Cognitive skills, personality and family 
background. Marginal efects 

Notes: the table reports marginal efects estimated with diferent models. The sample includes UKHLS wave 3 
observations born between 1950 and 1989, with non-missing college, cognitive and Big 5 score. The individual 
characteristics scores and college premium are standardized to mean 0 and standard deviation 1. Conventional 
standard errors are reported in parentheses. 

6. PGS Analysis 

A common criticism of an analysis that takes cognitive skills as an exogenous characteristic of an 

individual notes that cognitive ability at age 18 or later is not in fact an exogenous variable, but is 

the outcome of a rich network of family background, social interactions, and school education (for 

the direct causal efect of education on intelligence, see Ritchie and Tucker-Drob (2018); Hegelund 

et al. (2020); Deary and Johnson (2010); Hansen et al. (2004); Ashenfelter and Krueger (1994) 

use identical twins to estimate efect of schooling.). A related but diferent criticism is the one 

presented Heckman et al. (2006), who point out that the estimates obtained using as independent 

variables latent factors may be very diferent from those obtained using noisy measurements (as 

are our cognitive scores). A difculty inherent in the program they propose, however, is the 

weakness of the identifcation. To illustrate this in our case, consider a simple model in which 

wages are determined by cognitive and non-cognitive latent factors, for which noisy measurements 
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are available. It is easy to see that diferent parameter vectors of the contribution of latent factors 

to wages and to noise in the measurements may produce the same observable data. 

To address these potential criticisms and establish a proper evaluation of the efect size of cogni-

tive ability on earnings, we no longer consider the measurement provided by the variable θ. We rely 

instead on the information available for a subset of the original sample of the genetic component 

of the individual’s attitude to acquire education and cognitive skills. 

To this end, we compute Polygenic Score (P GS, sometimes called Polygenic Index) for variable 

of interest. We focus on years of education (EY) as the main trait for PGS as it is one of the most 

well-studied phenotypes in the genome-wide association studies. A P GS (or P GI) is a single score, 

specifc to each individual, that gives a measure of the attitude or predisposition of that individual 

for a given trait. The computation of a P GS relies on a Genome-Wide Association Study (GW AS). 

A GW AS identifes common genetic variants that contribute to specifc traits (see Bush and Moore 

(2012); Zeng et al. (2015); Pearson and Manolio (2008); Ufelmann et al. (2021)). The variants 

considered in the GW A study are Single Nucleotide Polymorphisms (SNP )’s, that is, variations 

at a single position in a DNA sequence among individuals. A GW A study spans the entire genome 

(hence the Genome-Wide qualifcation) and involve a very large number of individuals8 . Each 

P GS, for a specifc phenotype, is computed as a weighted sum of a person’s string of SNP ’s. The 

weights are obtained from a GW AS, which estimates a coefcient measuring how much any variant 

is associated with the trait of interest. 

We relied on the genotype information available for a subset of the original sample. More detailed 

information on the data used and the procedure followed is provided in sections I.1 and I.2 of the 

Appendix. 

A frst simple descriptive comparison of the efects of the individual characteristics on the prob-

ability of obtaining college is provided in fgure (5): A steeper curve in the fgure suggests a larger 

role of that factor in explaining college variable. Thus, observed cognitive score appears to be the 

most important factor explaining college variable in the data. Recall from Table 1 that a 1 sd 

higher observed cognitive score is associated with about 15 pp higher college probability. Family 

advantage score curve is as steep as the cognitive score curve in the upper half of the data. The 

EY PGS curve is slightly fatter than that of cognitive score and, fnally, the Big 5 score curve is 

8For example, the latest GWAS of educational attainment (EY) uses genotypes from 3 million individuals (Okbay, 
2022). GWAS for fuid intelligence score uses genotypes of more than 250 thousand individuals in the UK Biobank 
(Savage et al., 2018). 
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Figure 5. Individual characteristics and Pr(College) 
Notes: the fgure plots average college shares given individual scores (observed IQ score, EY PGS, family advantage 
score and Big 5 score) in the METADAC subsample. 

almost completely fat except a hump in the middle. In the fgure all variables are standardized to 

have mean zero and standard deviation one. It should be kept in mind that two thirds of the data 

are in the interval between −1 and 1. 

Table (5) corresponds to table (1), with the measurement of cognitive ability (the variable θ) 

replaced by the EY PGS. The marginal efects of the EY PGS are reduced by approximately one 

third of those for the cognitive score, but the signifcance level of the estimated coefcients are 

similar. In both cases they are substantially larger than the corresponding values for personality 

traits (Big5score), while the marginal efects of EY PGS and F amscore are now comparable in 

magnitude. 

Table (6) below reports the result of the SEM for college indicator (logit regression) and log-

wages at 45. The marginal efect on log-wages of the EY PGS is substantially lower than the 

one for college, but remains signifcant statistically and economically. A 1 sd higher EY PGS is 

associated with up to 4 % higher wages. The point estimate for the younger cohort is slightly 

lower. However, the sample size for the younger generation is approximately one third contributing 
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Born in 1950-64 Born in 1960-79 Born in 1980-89 

EY PGS 

Fam score 

Big 5 score 

EY PGS × Fam score 

EY PGS × Big 5 score 

Obs. 

(1) 
OLS 

0.088∗∗∗ 

(0.010) 

0.066∗∗∗ 

(0.011) 

0.031∗∗ 

(0.010) 

0.032∗∗ 

(0.012) 

0.013 
(0.010) 

1,863 

(2) 
Logit ME 

0.085∗∗∗ 

(0.011) 

0.077∗∗∗ 

(0.013) 

0.031∗∗ 

(0.010) 

1,863 

(3) 
OLS 

0.105∗∗∗ 

(0.012) 

0.101∗∗∗ 

(0.012) 

0.000 
(0.013) 

0.032∗ 

(0.013) 

-0.004 
(0.012) 

1,472 

(4) 
Logit ME 

0.110∗∗∗ 

(0.014) 

0.131∗∗∗ 

(0.017) 

0.001 
(0.013) 

1,472 

(5) 
OLS 

0.087∗∗∗ 

(0.020) 

0.104∗∗∗ 

(0.021) 

0.007 
(0.020) 

0.012 
(0.021) 

0.004 
(0.018) 

537 

(6) 
Logit ME 

0.097∗∗∗ 

(0.023) 

0.129∗∗∗ 

(0.026) 

0.007 
(0.021) 

537 

Standard errors in parentheses 
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001 

Table 5. College, individual characteristics and PGS 
Notes: the table reports marginal efects of individual characteristics and EY PGS on college probability. Columns 
1, 3 and 5 report simple regression coefcients from linear probability model. Columns 2, 4, and 6 report marginal 
efects after logit estimations. The estimations are run separately by 15-year birth cohort groups. 

to larger standard errors. So, the coefcients of EY PGS between the two youngest birth cohorts 

are statistically indistinguishable. 

In addition to the direct efect conditional on education, EY PGS also has an indirect efect 

through college acquisition. The decomposition is reported in the lower part of Table 6. For 

example, a 1 sd higher EY PGS in the middle cohort is associated with a 0.5 log points increase 

in college odds ratio, while college degree is associated with 40% higher predicted wages. This 

translates to 4% higher predicted wages for a 1 sd higher EY PGS via college degree channel. It is 

clear from the table that the association between EY PGS and predicted wages is largely mediated 

through college acquisition. About half of total association between EY PGS and predicted wages 

can be attributed to college degree. 

The table (7) below reports the results of the non-linear estimates. It corresponds to the earlier 

table (4), with the cognitive score variable replaced by the EY PGS. The coefcient of EY PGS is 

now lower than that cognitive score in Table (4). At the same time, the coefcients of the rest of 

the variables go up. 
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Born in 1950-64 Born in 1960-79 Born in 1980-89 

Poisson Logit Poisson Logit Poisson Logit 
Pred. wage 45 College Pred. wage 45 College Pred. wage 45 College 

Male 0.332∗∗∗ 0.203 0.267∗∗∗ -0.042 0.210∗∗∗ 0.045 
(0.012) (0.113) (0.012) (0.121) (0.019) (0.189) 

College 0.441∗∗∗ 0.418∗∗∗ 0.408∗∗∗ 

(0.013) (0.012) (0.019) 

EY PGS 0.037∗∗∗ 0.511∗∗∗ 0.040∗∗∗ 0.534∗∗∗ 0.020∗ 0.421∗∗∗ 

(0.006) (0.066) (0.006) (0.068) (0.010) (0.101) 

Fam score 0.460∗∗∗ 0.638∗∗∗ 0.559∗∗∗ 

(0.084) (0.090) (0.119) 

Big 5 score 0.183∗∗ 0.003 0.033 
(0.062) (0.065) (0.093) 

EY PGS × Fam score 0.072 0.040 -0.054 
(0.087) (0.095) (0.128) 

EY PGS × Big 5 score 0.033 -0.024 0.018 
(0.064) (0.068) (0.086) 

Marginal efect of EY PGS on predicted wages at age 45 

Indirect efect 0.040 0.044 0.036 
(0.004) (0.005) (0.008) 

Total efect 0.077 0.084 0.055 
(0.008) (0.007) (0.012) 

Obs. 2,309 1,986 703 

Standard errors in parentheses 
∗ p < 0.01, ∗∗∗ p < 0.05, ∗∗ p < 0.001 

Table 6. SEM of wages and college in METADAC subsample 
Notes: the table reports SEM regression results with predicted log wages at age 45 and college indicator as the 
dependent variables. EY PGS, family advantage and Big 5 scores are standardised to mean 0 and standard deviation 
1. The regressions are run in METADAC subsample born in 1950-89 with non-missing college, cognitive and Big 5 
scores. Standard errors are reported in parentheses. 

7. Conclusions 

This study proposed to estimate the efect of individual characteristics, including but not limited 

to cognitive skills, as well as family background, to the earnings of individuals. We relied on a 

large dataset which included detailed information on the dependent and independent variables. 

We provided a quantitative estimate of the efect of cognitive ability on earnings, by examining 

two pathways: along one, cognitive ability directly afects earnings, perhaps through changes in 

productivity. Along the other, congitive skills afect the probability of acquiring higher education. 



CHARACTERISTICS AND EARNINGS 23 

LPM Logit 
Cutof 
power 

Logit 
power 

PGS EY 0.048∗∗∗ 0.033∗ 0.043∗∗ 0.037∗ 

(0.014) (0.016) (0.014) (0.015) 

Fam score 0.078∗∗∗ 0.131∗∗∗ 0.110∗∗∗ 0.125∗∗∗ 

(0.011) (0.013) (0.012) (0.013) 

Big 5 score 0.071∗∗∗ 0.074∗∗∗ 0.075∗∗∗ 0.073∗∗∗ 

(0.017) (0.020) (0.018) (0.019) 

College premium 0.075∗∗∗ 0.079∗∗ 0.077∗∗ 0.076∗∗ 

(0.022) (0.027) (0.024) (0.026) 

Obs. 3,872 3,872 3,872 3,872 
Delta 0.905 0.905 0.905 0.905 
Power 1.20 2.95 
RMSE 0.4351 0.4327 0.4340 0.4333 
College premium mean 45.78 45.78 45.78 45.78 
College premium sd 10.59 10.59 10.59 10.59 

Standard errors in parentheses 
∗ p < 0.01, ∗∗∗ p < 0.05, ∗∗ p < 0.001 

Table 7. Non-linear estimations with EY PGS 
Notes: the table reports marginal efects estimated with the diferent models as indicated. EY PGS, family advantage 
and Big 5 scores are standardised to mean 0 and standard deviation 1. The regressions are run in METADAC 
subsample born in 1950-89 with non-missing college, cognitive and Big 5 scores. Standard errors are reported in 
parentheses. 

The three set of factors (cognitive skills, personality and family background) contribute to earn-

ings, but the size of the marginal efect of cognitive skills is larger than each of the other two (see 

table 3). A similar conclusion holds for the comparative estimate of the marginal efect on the 

probability of college acquisition (see table 4). 

The data set included information on the genotype of a good sized subset of the original sample. 

Using this additional information we could provide an estimate of the efect of these original char-

acteristics on education acquisition and earnings (see table 6 in the main text for the Polygenic 

score on education years, and table 11 in the appendix for that of fuid intelligence). The estimate 

relying on the Polygenic score on education years cannot separate between the relative contribution 

of cognitive skills and other traits, but they do show that the joint contribution of this character-

istics acquired at birth are substantial. The results using the P GS for cognitive ability show that 

the contribution of factors underlying cognitive skills is important. 
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Appendix A. Description of the Economy 

Appendix B. Production Function 

We allow for separate aggregation of labor inputs of diferent intelligence but same human capital 

(see equations 1 and 2 in (Ottaviano and Peri (2012)); see also (Card and Lemieux (2001))). For 

a given allocation of the population into labor types 

µ ≡ (µ(h, θ, i) : h ∈ H, θ ∈ Θ, i ∈ N) 

given a vector of positive coefcients (b(h) : h ∈ H) and 

(a(h, τ, j) : h ∈ H, τ ∈ Θ, j ∈ A) 

the total production equal to ! 1 
ρX 

(15) F (µ; b, a, ρ, σ) ≡ b(h)C(h)ρ 

h∈H 

where 

(16) C(h) ≡ 

 X 
a(h, τ, j)µ(h, τ, j)σ 

 1 
σ 

τ ∈Θ,j∈A 

so that 

Proposition B.1. The wage for type (h, θ, i) is: 

(17) w(h, θ, i) = F (µ)1−ρC(h)ρ−σb(h)a(h, θ, i)µ(h, θ, i)σ−1 

Proof. The equation (17) follows from: 

! 1−ρ 

1 X 
w(h, θ, i) = 

ρ 
h∈H 

b(h)C(h)ρ 
ρ 

× b(h)ρC(h)ρ−1 

1 × 
σ 

 X 
a(h, τ, j)µ(h, τ, j)σ 

 1−σ 
σ 

τ∈Θ,j∈A 

× σa(h, θ, i)µ(h, θ, i)σ−1 
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□ 

When ρ = σ we have the standard CES with coefcient for the type (h, θ, i) equal to b(h)a(h, θ, i). 

In this case the wage equation is: 

(18) w(h, θ, i) = F (µ)1−ρb(h)a(h, θ, i)µ(h, θ, i)ρ−1 

∗The wage equation (17) gives the equilibrium wage as a continuous function of µ . 

Appendix C. Population Process 

The dynamical system for µ is simple. 

The initial condition for i ≤ G 

(19) µ(NC, θ, i) = (1 − δ)iξ(θ), µ(C, θ, i) = 0. 

For the G year: 

(20) µ(C, θ, G) = (1 − δ)Gξ(θ)Π(e ∗ (θ), θ), 

µ(NC, θ, G) = (1 − δ)Gξ(θ) − µ(C, θ, G). 

For any other age: 

(21) µ(h, θ, i + 1) = (1 − δ)µ(h, θ, i). 

Appendix D. Equilibrium Conditions 

D.1. Equilibrium. This is the equilibrium at steady state in the dynamic model, or simply the 

equilibrium in the static model. The steady state is characterized by a probability distribution 

Defnition D.1. An equilibrium is a vector 

(w ∗ (h, θ, i), µ ∗ (h, θ, i), e ∗ (z)) : (h, θ, i) ∈ H × Z × N) 

such that: 

(1) for every z, e ∗(z) is optimal for type z in the year when decides the education investment, 

∗given the vector of wages w ; 
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∗(2) w is the equilibrium wage vector, equal to the marginal product of the corresponding type 

∗ at µ ; 

∗ ∗(3) µ is the steady state distribution over characteristics in the population, given e and ξ. 

D.2. Parameters. The set of parameters are: 

(1) (a, b, ρ, σ) for the production function; 

(2) ξ distribution of characteristics 

Appendix E. Equilibrium algorithm 

We assume: 

Assumption E.1. (1) The function Π is continuous and strictly increasing in both arguments; 

(2) The function C(·; z) is continuously diferentiable and strictly convex for every z. 

The equilibrium can be found as a fxed point on the policy function e. 

Proposition E.2. Under assumption (E.1) an equilibrium exists. 

Proof. The algorithm 

(1) For a given policy (e(θ) : θ ∈ Θ)) we derive the implied invariant distribution µ; 

(2) From this distribution we get wages and can thus compute the optimal education choice 

policy for every types θ; 

A fxed point of this iteration is an equilibrium. The two maps, one from the optimal policy to 

distribution over characteristics of the population (in section (C)) and the other from distribution 

to wages (equation 17) are continuous, and the set of population policies compact. □ 



� 
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Appendix F. Linear Coefficients model 

Here we consider the model with coefcients in the production function linear in intelligence. 

We denote the logit: 

xe 
(22) Λ(x) ≡ 

1 + ex 

We allocate the population to deciles, so θ ranges in a ten-elements set, and let p = 0.1. The human 

capital h is either 0 (no college) or 1 (college). 

We assume the production function to be: 

(23) F (µ) = 

X 
(αhθ + βh)µ(θ, 1)ρ 

 1 
ρ 

θ,h 

where (α1, α0, β) are real valued parameters to be estimated, and that measure respectively: (α1, α0) 

the efect of intelligence on productivity (depending on h) and β the shift due to college education. 

The supply of college graduates for each class of intelligence θ is a logit of the diference between 

w(θ, 1) and w(θ, 0), multiplied a factor Γ(θ, x) where x is the pair of family and big 5 variables, 

and the function Γ is linear. 

We denote by νX (x|θ) the conditional probability on the traits and family characteristics, for a 

given θ. An equilibrium is a vector of µ(θ, 1) ≡ ζ(θ) that solve: 

(24) ∀θ, ζ(θ) = pP r(h = 1|θ, µ) Z � 
Γ(θ, x)(F (µ)1−ρ[(α1θ + β)ζ(θ)ρ−1 − α0θ(p − ζ(θ))ρ−1])= p Λ 

X 
dνX (x|θ) 

Note that F can be written as a function of ζ. 

For each fxed ρ, the parameters are 

(25) (Γθ, Γx2 , Γx2 , α1, α0, β) 

with Γθ = 1 − Γx1 − Γx2 . The following is clear: 

(1) For each µ there is a unique solution to the 10 equations (24). 

(2) For each vector of parameters there is a unique µ that solves (24). 

We minimize the distance between the observed and predicted frequencies. 
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Appendix G. Additional Information on Data And Analysis 

G.1. Coefcient Estimations. In Table (8) we report the coefcients of the power model. 

Table 8. Non-linear estimation results: Power Model 

(1) 
Pr(college) 

αθ 0.007∗∗∗ 

(0.000) 

αFam 0.003∗∗∗ 

(0.000) 

αBig5 0.002∗∗∗ 

(0.000) 

Γ intercept -0.073∗∗∗ 

(0.003) 

Intercept 0.183∗∗∗ 

(0.023) 

Obs. 31,571 

Standard errors in parentheses 
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001 
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In Table (9) we report the coefcients of the logit and power model. 

Table 9. Non-linear estimation: Exponential Power. The table reports 
the estimated coefcients. 

(1) 
Pr(college) 

αθ 0.003∗∗∗ 

(0.000) 

αFam 0.002∗∗∗ 

(0.000) 

αBig5 0.001∗∗∗ 

(0.000) 

Γ intercept -0.033∗∗∗ 

(0.006) 

Intercept -2.357∗∗∗ 

(0.425) 

Obs. 31,571 

Standard errors in parentheses 
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001 
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Appendix H. PGS for Intelligence and EA 

The results of the analysis in section (6) were obtained relying on the P GS for educational 

attainment. In this section we reconsider those results using instead the P GS for Intelligence. We 

document that nothing substantial changes. 

Table (10) reports the equivalent of table (5), replacing the P GSEY with the P GSIQ: 

Born in 1950-64 Born in 1960-79 Born in 1980-94 

(1) 
OLS 

(2) 
Logit ME 

(3) 
OLS 

(4) 
Logit ME 

(5) 
OLS 

(6) 
Logit ME 

IQ PGS 0.063∗∗∗ 

(0.010) 
0.063∗∗∗ 

(0.010) 
0.075∗∗∗ 

(0.012) 
0.082∗∗∗ 

(0.013) 
0.046∗ 

(0.021) 
0.049∗ 

(0.023) 

ηFam 0.077∗∗∗ 

(0.011) 
0.097∗∗∗ 

(0.013) 
0.111∗∗∗ 

(0.013) 
0.152∗∗∗ 

(0.017) 
0.110∗∗∗ 

(0.021) 
0.132∗∗∗ 

(0.026) 

ηBig5 0.035∗∗∗ 

(0.010) 
0.034∗∗∗ 

(0.010) 
0.002 
(0.013) 

-0.002 
(0.013) 

0.013 
(0.020) 

0.012 
(0.021) 

IQ PGS × ηFam 0.007 
(0.011) 

0.010 
(0.012) 

0.009 
(0.021) 

IQ PGS × ηBig5 0.004 
(0.011) 

0.024 
(0.013) 

0.018 
(0.020) 

Obs. 1,863 1,863 1,472 1,472 537 537 

Standard errors in parentheses 
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001 

Table 10. College, individual characteristics and PGS 
Notes: the table reports marginal efects of individual characteristics and IQ PGS on college probability. Columns 
1, 3 and 5 report simple regression coefcients from linear probability model. Columns 2, 4, and 6 report marginal 
efects after logit estimations. The estimations are run separately by 15-year birth cohort groups. 
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In table (11) we report the results of the GSEM presented in table (6), but with the P GS 

computed for the IQ rather than for education years. 

Born in 1950-64 Born in 1960-79 Born in 1980-89 

Poisson Logit Poisson Logit Poisson Logit 
Pred. wage 45 College Pred. wage 45 College Pred. wage 45 College 

Male 0.332∗∗∗ 0.174 0.267∗∗∗ -0.024 0.207∗∗∗ -0.001 
(0.012) (0.112) (0.012) (0.119) (0.019) (0.186) 

College 0.450∗∗∗ 0.427∗∗∗ 0.416∗∗∗ 

(0.013) (0.012) (0.019) 

IQ PGS 0.022∗∗∗ 0.374∗∗∗ 0.030∗∗∗ 0.406∗∗∗ -0.001 0.218∗ 

(0.006) (0.060) (0.006) (0.066) (0.010) (0.098) 

ηFam 0.568∗∗∗ 0.738∗∗∗ 0.570∗∗∗ 

(0.087) (0.094) (0.118) 

ηBig5 0.205∗∗∗ -0.011 0.055 
(0.060) (0.065) (0.091) 

IQ PGS ×ηFam -0.071 -0.110 -0.026 
(0.079) (0.090) (0.111) 

IQ PGS ×ηBig5 -0.012 0.126 0.080 
(0.064) (0.066) (0.092) 

Marginal efect of intelligence on predicted wages at age 45 

Indirect efect 0.028 0.032 0.020 
(0.004) (0.005) (0.009) 

Total efect 0.050 0.061 0.019 
(0.007) (0.008) (0.013) 

Obs. 2,309 1,986 703 

Standard errors in parentheses 
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001 

Table 11. SEM of wages and college in METADAC subsample 
Notes: the table reports SEM regression results with predicted log wages at age 45 and college indicator as the 
dependent variables. The SEM estimations allow correlated error terms between the two equations. IQ PGS, Family 
advantage (ηFam) and Big 5 (ηBig 5) scores are standardised to mean 0 and standard deviation 1. The regressions are 
run in METADAC subsample born in 1950-94 with non-missing college and individual scores. Standard errors are 
reported in parentheses. 
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In the table (12) below we do the same for table (7): 

LPM Logit 
Cutof 
power 

Logit 
power 

PGS EY 0.048∗∗∗ 0.033∗ 0.043∗∗ 0.037∗ 

(0.014) (0.016) (0.014) (0.015) 

Fam score 0.078∗∗∗ 0.131∗∗∗ 0.110∗∗∗ 0.125∗∗∗ 

(0.011) (0.013) (0.012) (0.013) 

Big 5 score 0.071∗∗∗ 0.074∗∗∗ 0.075∗∗∗ 0.073∗∗∗ 

(0.017) (0.020) (0.018) (0.019) 

College premium 0.075∗∗∗ 0.079∗∗ 0.077∗∗ 0.076∗∗ 

(0.022) (0.027) (0.024) (0.026) 

Obs. 3,872 3,872 3,872 3,872 
Delta 0.905 0.905 0.905 0.905 
Power 1.20 2.95 
RMSE 0.4351 0.4327 0.4340 0.4333 
College premium mean 45.78 45.78 45.78 45.78 
College premium sd 10.59 10.59 10.59 10.59 

Standard errors in parentheses 
∗ p < 0.01, ∗∗∗ p < 0.05, ∗∗ p < 0.001 

Table 12. Non-linear estimations with IQ PGS 
Notes: 



3
6 Robustness of GSEM results between subsamples and earnings prediction methods 

Full cont. Full binned GTP binned MDAC binned 

Poisson Logit Poisson Logit Poisson Logit Poisson Logit Poisson Logit 
Pred. wage 45 College Pred. wage 45 College Pred. wage 45 College Pred. wage 45 College Pred. wage 45 College 

Male 0.184∗∗∗ -0.014 0.209∗∗∗ -0.014 0.262∗∗∗ 0.033 0.280∗∗∗ 0.042 0.282∗∗∗ 0.082 
(0.003) (0.030) (0.004) (0.030) (0.008) (0.067) (0.008) (0.078) (0.008) (0.075) 

College 0.424∗∗∗ 0.377∗∗∗ 0.366∗∗∗ 0.362∗∗∗ 0.434∗∗∗ 

(0.004) (0.004) (0.008) (0.008) (0.008) 

θ 0.132∗∗∗ 0.757∗∗∗ 0.122∗∗∗ 0.757∗∗∗ 0.125∗∗∗ 0.943∗∗∗ 0.131∗∗∗ 0.940∗∗∗ 

(0.002) (0.017) (0.002) (0.017) (0.005) (0.045) (0.005) (0.051) 

EY PGS 0.034∗∗∗ 0.491∗∗∗ 

(0.004) (0.043) 

ηFam 0.324∗∗∗ 0.324∗∗∗ 0.440∗∗∗ 0.419∗∗∗ 0.564∗∗∗ 

(0.018) (0.018) (0.055) (0.060) (0.055) 

ηBig5 0.097∗∗∗ 0.097∗∗∗ 0.077 0.087 0.079∗ 

(0.015) (0.015) (0.039) (0.045) (0.040) 

θ × ηFam 0.052∗∗ 0.052∗∗ 0.013 0.029 
(0.019) (0.019) (0.057) (0.064) 

θ × ηBig5 -0.080∗∗∗ -0.080∗∗∗ -0.071 -0.084 
(0.017) (0.017) (0.043) (0.050) 

EY PGS ×ηFam 0.022 
(0.057) 

EY PGS ×ηBig5 0.017 
(0.040) 

Marginal efect of intelligence on predicted wages at age 45 

Indirect efect 0.061 0.054 0.060 0.059 0.041 
(0.001) (0.001) (0.003) (0.003) (0.003) 

Total efect 0.193 0.176 0.185 0.190 0.075 
(0.002) (0.002) (0.005) (0.005) (0.005) 

Obs. 25,420 25,356 5,374 4,998 4,998 

Standard errors in parentheses 
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001 

Table 13. Robustness of GSEM results between subsamples 
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H.1. Cognitive score. In wave 3 (with data collected in the period 2011-13), the UKHLS ad-

ministered cognitive ability tests to the participants. In addition to variables coding each answer 

given by each individual, the UKHLS has a set of derived variables counting the number of correct 

answers to each test. We construct the cognitive score using the counts of correct answers given by 

an individual in each test. Specifcally we use the following variables: 

(1) A score of memory, based on a word recall task: individuals are asked to recall as many as 

they can from a list of ten words. There were two parts, immediate (variable cgwri dv: par-

ticipants were asked to recall words immediately after presentation) and delayed (variable 

cgwrd dv: participants were asked to recall words after the serial 7 subtractions test). 

(2) A score serial 7 subtractions (variable cgs7cs dv for number of correct subtractions, as 

opposed to the number of correct answers). Individuals were asked to subtract 7 from the 

previous number, starting from 100, for fve times in sequence. 

(3) A score number series (variables cgns1sc6 dv and cgns2sc6 dv). This task requires the 

respondent to look at a series of numbers. One number is missing from the series, and the 

respondent must provide the missing number in the series, after identifying the pattern in 

the series. 

(4) A score of verbal fuency (variable cgvfc dv). Individuals were asked to name as many 

unique animals as they could in one minute. 

(5) A score of numerical ability (variable cgna dv). The variable is coded on a 0 to 5 scale, 

given by the number of items answered correctly. The tasks consisted of solving simple 

numerical problems based on everyday day life examples (such as computing the correct 

change after a purchase). 

The correlation between the six scores is positive for all pairs. We combine the scores into a 

single cognitive ability score using confrmatory factor analysis, following Johnson and J.Bouchard 

(2005). We frst match the UKHLS cognitive tests to the tests used by Johnson and J.Bouchard 

(2005) based on the description of tasks. We also standardize the scores within each year of birth 

and gender cells to abstract from possible age-related diferences in performances. 

H.2. Big 5 personality score. In wave 3, the UKHLS had also administered short 15-item Big 5 

personality test to adult respondents. In each question, the respondents are asked to respond to a 

statement with a number from 1 (does not apply to me at all) to 7 (applies to me perfectly). The 

https://www.understandingsociety.ac.uk/search?fulltext=cgwri_dv
https://www.understandingsociety.ac.uk/search?fulltext=cgwrd_dv
https://www.understandingsociety.ac.uk/search?fulltext=cgs7cs_dv
https://www.understandingsociety.ac.uk/search?fulltext=cgns1sc6_dv
https://www.understandingsociety.ac.uk/search?fulltext=cgns2sc6_dv
https://www.understandingsociety.ac.uk/search?fulltext=cgvfc_dv
https://www.understandingsociety.ac.uk/search?fulltext=cgna_dv
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UKHLS provides a set of derived variables with average scores across questions in each sub-domain. 

Specifcally, 

(1) an agreeableness variable (big5a dv) combines scores from statements about being rude 

(reverse coded), forgiving, and kind; 

(2) a conscientiousness variable (big5c dv) combines scores from statements about doing thor-

ough job, being lazy (reverse coded) and being efcient; 

(3) an extraversion variable (big5e dv) combines scores from statements about being talkative, 

sociable and reserved (reverse coded); 

(4) a neuroticism variable (big5n dv) combines scores from statements about worrying a lot, 

being nervours and relaxed (reverse coded); and 

(5) an openness variable (big5o dv) combines scores from statements about being original, 

artistic and having active imagination. 

All fve domains have expected correlation signs: agreeableness, conscientiousness, extraversion 

and openness are positively correlated with each other and neuroticism score is negatively correlated 

with the rest. Even though all variables should have similar scales, we standardise them within each 

5-year birth cohort and gender cells. This way, we ensure all variables have mean zero and standard 

deviation one, removing possible age and gender diferences. Then, we run principal component 

analysis and use the frst component (which captures 36% of variance in the data) as the Big 5 

score. 

https://www.understandingsociety.ac.uk/documentation/mainstage/variables/big5a_dv/
https://www.understandingsociety.ac.uk/documentation/mainstage/variables/big5c_dv/
https://www.understandingsociety.ac.uk/documentation/mainstage/variables/big5e_dv/
https://www.understandingsociety.ac.uk/documentation/mainstage/variables/big5n_dv/
https://www.understandingsociety.ac.uk/documentation/mainstage/variables/big5o_dv/
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H.3. Predicted earnings. We use the UKHLS dataset to construct also a panel of earnings across 

twelve waves for the individuals in the working sample. Thus, for each individual we observe at 

most twelve years of earnings history. These twelve observations cover diferent sections along the 

age profle of wages depending on birth cohorts. 

We address the issue of the span covered by earnings data by estimating the wage profles, and 

using predicted wages. In particular, we ft a fxed-efects regression in Equation (26). 

X 
(26) log wit = α + βa + γaXi + δt + µi + vit 

a∈A 

where A = [20, 65], δt are time FEs, βa are age FEs and γa are age FEs interacted with individual 

characteristics in Xi (gender and degree indicator). To overcome collinearity between age and time 

we need to impose an additional restriction to the coefcients. Motivated by a similar application 

of economic theory in Lagakos et al. (2018), we force the age profles to be fat between ages 51 

and 60. We achieve this by excluding relevant age indicators from the regression equation. 

We then calculate predicted wages net of year efects as follows 

� � 
ŵia = exp α̂+ β̂  

a + γ̂aXi + µ̂i ∀a ∈ A 

where β̂  
a = 0 ∀a ∈ [51, 60]. 

We also compute the discounted present value of predicted wages 

X ŵi,a
DP V (w)i = 

(1 + r)a 
a∈A 
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Appendix I. Information on GWAS and PGS 

I.1. Details on polygenic scores. The GWAS coefcients used to generate the polygenic scores 

were downloaded from Okbay (2022); Savage et al. (2018); Demange et al. (2021). Okbay (2022) 

estimate GWAS for years of education. The frst study (Okbay (2022)) uses various datasets with 

a total sample of size of more than three million individuals. A sample of 269,867 individuals, part 

of the UK Biobank dataset, is used in Savage et al. (2018) to estimate GWAS of fuid intelligence 

score. Finally Demange et al. (2021) estimate GWAS of latent cognitive and noncognitive factors 

using previously published estimates for years of education and cognitive test scores. They estimate 

a structural equation model where cognitive latent factor afects both the education and cognitive 

test score GWAS, while noncognitive factor afects only education GWAS. 

Given the GWAS estimates and genotype information in the METADAC we compute polygenic 

scores for each of these phenotypes using a simple linear scoring method. 

X 
(27) P GSi = βkgik 

k 

where βk is the GWAS coefcient of SNP k and gik ∈ {0, 1, 2} is the genotype of individual i at 

locus k. However, naive scoring using full set of matched SNPs produces biased polygenic score 

due to correlation of genotypes between loci. Such correlation is called linkage disequilibrium (LD) 

and results from the fact that variants are inherited in blocks. 

The approach we adopt here uses all variants scaling them down according to linkage disequilib-

rium. The method was introduced by Vilhjálmsson (2015) as LDpred and later updated by Privé 

et al. (2021) as LDpred2. A detailed comparison of diferent methods of computation of the scores 

is in Ni et al. (2021). 

I.2. METADAC dataset. As part of the general dataset, UKHLS collected genotyping informa-

tion on 9,920 individuals. This information was collected in waves 2 and 3. Our working sample 

consists of individuals born in 1950-89 with non-missing college indicator, intelligence score, Big 5 

personality score and parental background information. Furthermore, we keep individuals who have 

been observed at least once between ages 20 and 65 over 8 waves. We have genotype information 

for 5,579 individuals over a total sample size of 26,643. The genotyped individuals are of higher 

age, higher intelligence than the general sample. 
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The METADAC provides genotyped calls at 518,542 variants, with no inputed variants. The 

genotyping rate is high: 95% of all variants have fewer than 32 (18) missing observations in the full 

(working) sample. All variants are bi-allelic SNPs (that is, only two of the four possible nucleotides 

appear at that locus). 130,356 SNPs (or 25% of variants) are fxed in the full METADAC sample, 

i.e., all individuals in the sample have the same allele at a given locus. The number of fxed SNPs 

rises in the working METADAC sample to 145,107 SNPs (or 28% of variants) 

I.3. Predicted earnings profle. Due to privacy issues, the individual identifers in the METADAC 

and the UKHLS are diferent, so it is impossible to link the two datasets. Therefore, we cannot use 

predicted DPV of lifetime earnings from the main analysis sample and need to repeat the prediction 

process again in the METADAC. This is further complicated by the fact that the METADAC only 

provides 50-quantiles of earnings and 5-hour bins of hours worked instead of continuous variables. 

This means that we have adjust the prediction algorithm to account for this. 

First, we generate separate variables for lower and upper bounds of earnings quantiles and hours 

bins. For simplicity, we use mid-points of hours bins in the rest of the analysis. That is, if in the 

original data a person has worked 30-34 hours a week, we assume that she worked exactly 32 hours. 

We then calculate lower and upper bounds of hourly wages by dividing respective thresholds of 

monthly earnings quantiles on mid-point estimates of hours worked in four weeks. 

Recall that in the main analysis sample, predicted earnings are based on the wage-age profle 

estimation in Equation (26). Denote the lower bound of hourly wages corresponding to earnings 
(1) (2)

quantile q at time t as w and the upper bound - w . Then, the regression equation becomes qt qt 

� h i� � h i� 
(1) (2) (1) (2)

(28) Pr ln wit ∈ w , w = Pr vit + µi ∈ w − ω(a, i, t), w − ω(a, i, t)qt qt qt qt 

P 
where ω(a, i, t) ≡ α + a∈A (βa + γaXi) + δt is predicted level of wages given age a, individual 

characteristics Xi and time period t. We fx its value given the coefcients from Equation (26)� �P 
in the main analysis sample: ω̂(a, i, t) = α̂ + β̂  

a + γ̂aXi + δ̂  
t. What is left then is to a∈A � � 

estimate values vit and µi that would ft the dataset the best. We assume that µi ∼ N mµ, s � � µ 

2 2 2and vit ∼ N 0, s , where values mµ, s , s correspond to moments of µ̂i and v̂it from Equation (26)v µ v 

2 
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2in the subsample of genotyped individuals9 . In particular, we estimate of mµ = −0.09, s = 0.35µ 

2and s = 0.19.v 

We estimate Equation (28) using the generalised structural equation model (GSEM) in Stata, 

which allows us to specify an interval regression with latent variable at the individual level. To 

avoid confusion with the individual fxed efect from Equation (26), we denote the predicted value 

REof the latent variable by µ̃i . Then, as in the main analysis sample, we compute predicted wages 

at all ages net of time trends: 

X� � 
RE ˆ RE w̃ = α̂+ βa + γ̂aXi + µ̃ia i 

a∈A 

Finally, we compute the discounted present values of predicted lifetime earnings: 

X RE 
iaDP V (w)RE = 40 · 52 · w̃ 

i (1 + r)a 
a∈A 

As a robustness check of the prediction algorithm, we assign the observations in the main analysis 

sample to the earnings quantiles and hours bins from the METADAC. For example, all observations 

with weekly hours worked between 30 and 34 are assigned to 30-34 bin. We then repeat the same 

steps described above and obtain DP V (w)RE in the main analysis sample. This allows us to directly i 

compare the predicted earnings from fxed efects regression in Equation (26) and from the interval 

regression with latent variable in Equation (28). 

FEFigure 6 compares the distribution of individual efects predicted from the FE estimation (µ̂i ) 

REand from interval regression with latent variable (µ̃i ). The left panel compares the two in the 

main analysis sample, and the right panel plots the distribution in the METADAC sample. It is 

FE REclear that distributions are quite similar. Furthermore, Figure 7a shows that µ̂i and µ̃i in the 

main analysis sample are highly positively correlated (ρ = 0.91). This means that the predicted 

earnings from either prediction algorithm should be similar to each other. Indeed, Figure 7b shows 

that the predicted earnings from the two prediction algorithms are highly correlated with each 

other (ρ = 0.93). 

Finally, Table 13 confrms that there are no signifcant diferences in the main estimation results 

between subsamples and prediction methods. 

9The UKHLS data contains an indicator that is equal to 1 if an individual has been genotyped (part of METADAC) 
and 0 otherwise. Therefore, even though we cannot link between the two dataset, we can still compute sample 
statistics for genotyped individuals in the main analysis sample. 
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Figure 6. Distribution of predicted individual efects 
Note: the fgure plots the distribution of predicted individual efects µi. The left panel overlays the histograms of 
FE RE RE µ̂ and µ̃ in the main analysis sample. The right panel plots the histogram of µ̃ in the METADAC sample. 

Both panels show the density line of N (mµ, sµ 
2 ). 

i i i 

(a) Predicted individual efects (b) Predicted discounted present value of earnings 

Figure 7. Comparison between prediction algorithms in the full sample 
Note: the fgure shows scatterplots of predicted individual efects µi (left panel) and discounted present values of 
lifetime earnings DP V (w)i (right panel) between prediction methods in the main analysis sample. To mimic the data 
limitations of the METADAC, we group the earnings and hours worked to same bins and run the interval regressions 
with latent variable to obtain predicted wages. The plots also show simple regression lines (red line) and regression 
equations with standard errors in parentheses. 
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